Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
letric |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A \/ A <_ 0 ) ) |
3 |
1 2
|
mpan |
|- ( A e. RR -> ( 0 <_ A \/ A <_ 0 ) ) |
4 |
|
absid |
|- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
5 |
4
|
ex |
|- ( A e. RR -> ( 0 <_ A -> ( abs ` A ) = A ) ) |
6 |
|
absnid |
|- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
7 |
6
|
ex |
|- ( A e. RR -> ( A <_ 0 -> ( abs ` A ) = -u A ) ) |
8 |
5 7
|
orim12d |
|- ( A e. RR -> ( ( 0 <_ A \/ A <_ 0 ) -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) ) |
9 |
3 8
|
mpd |
|- ( A e. RR -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |