Step |
Hyp |
Ref |
Expression |
1 |
|
absproddvds.s |
|- ( ph -> Z C_ ZZ ) |
2 |
|
absproddvds.f |
|- ( ph -> Z e. Fin ) |
3 |
|
absproddvds.p |
|- P = ( abs ` prod_ z e. Z z ) |
4 |
|
absprodnn.z |
|- ( ph -> 0 e/ Z ) |
5 |
1
|
sselda |
|- ( ( ph /\ z e. Z ) -> z e. ZZ ) |
6 |
2 5
|
fprodzcl |
|- ( ph -> prod_ z e. Z z e. ZZ ) |
7 |
5
|
zcnd |
|- ( ( ph /\ z e. Z ) -> z e. CC ) |
8 |
|
elnelne2 |
|- ( ( z e. Z /\ 0 e/ Z ) -> z =/= 0 ) |
9 |
8
|
expcom |
|- ( 0 e/ Z -> ( z e. Z -> z =/= 0 ) ) |
10 |
4 9
|
syl |
|- ( ph -> ( z e. Z -> z =/= 0 ) ) |
11 |
10
|
imp |
|- ( ( ph /\ z e. Z ) -> z =/= 0 ) |
12 |
2 7 11
|
fprodn0 |
|- ( ph -> prod_ z e. Z z =/= 0 ) |
13 |
|
nnabscl |
|- ( ( prod_ z e. Z z e. ZZ /\ prod_ z e. Z z =/= 0 ) -> ( abs ` prod_ z e. Z z ) e. NN ) |
14 |
6 12 13
|
syl2anc |
|- ( ph -> ( abs ` prod_ z e. Z z ) e. NN ) |
15 |
3 14
|
eqeltrid |
|- ( ph -> P e. NN ) |