| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 |  | ax-icn |  |-  _i e. CC | 
						
							| 3 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 4 |  | mulcl |  |-  ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( B e. RR -> ( _i x. B ) e. CC ) | 
						
							| 6 |  | addcl |  |-  ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + ( _i x. B ) ) e. CC ) | 
						
							| 7 | 1 5 6 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) | 
						
							| 8 |  | abscl |  |-  ( ( A + ( _i x. B ) ) e. CC -> ( abs ` ( A + ( _i x. B ) ) ) e. RR ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( abs ` ( A + ( _i x. B ) ) ) e. RR ) | 
						
							| 10 |  | absge0 |  |-  ( ( A + ( _i x. B ) ) e. CC -> 0 <_ ( abs ` ( A + ( _i x. B ) ) ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> 0 <_ ( abs ` ( A + ( _i x. B ) ) ) ) | 
						
							| 12 |  | sqrtsq |  |-  ( ( ( abs ` ( A + ( _i x. B ) ) ) e. RR /\ 0 <_ ( abs ` ( A + ( _i x. B ) ) ) ) -> ( sqrt ` ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( abs ` ( A + ( _i x. B ) ) ) ) | 
						
							| 13 | 9 11 12 | syl2anc |  |-  ( ( A e. RR /\ B e. RR ) -> ( sqrt ` ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( abs ` ( A + ( _i x. B ) ) ) ) | 
						
							| 14 |  | absreimsq |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( sqrt ` ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( sqrt ` ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) | 
						
							| 16 | 13 15 | eqtr3d |  |-  ( ( A e. RR /\ B e. RR ) -> ( abs ` ( A + ( _i x. B ) ) ) = ( sqrt ` ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |