Metamath Proof Explorer


Theorem absresq

Description: Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006)

Ref Expression
Assertion absresq
|- ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) )

Proof

Step Hyp Ref Expression
1 cjre
 |-  ( A e. RR -> ( * ` A ) = A )
2 1 oveq2d
 |-  ( A e. RR -> ( A x. ( * ` A ) ) = ( A x. A ) )
3 recn
 |-  ( A e. RR -> A e. CC )
4 absvalsq
 |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) )
5 3 4 syl
 |-  ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) )
6 3 sqvald
 |-  ( A e. RR -> ( A ^ 2 ) = ( A x. A ) )
7 2 5 6 3eqtr4d
 |-  ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) )