Metamath Proof Explorer


Theorem absrpcld

Description: The absolute value of a nonzero number is a positive real. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1
|- ( ph -> A e. CC )
absne0d.2
|- ( ph -> A =/= 0 )
Assertion absrpcld
|- ( ph -> ( abs ` A ) e. RR+ )

Proof

Step Hyp Ref Expression
1 abscld.1
 |-  ( ph -> A e. CC )
2 absne0d.2
 |-  ( ph -> A =/= 0 )
3 absrpcl
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ )
4 1 2 3 syl2anc
 |-  ( ph -> ( abs ` A ) e. RR+ )