Metamath Proof Explorer


Theorem abssdv

Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006)

Ref Expression
Hypothesis abssdv.1
|- ( ph -> ( ps -> x e. A ) )
Assertion abssdv
|- ( ph -> { x | ps } C_ A )

Proof

Step Hyp Ref Expression
1 abssdv.1
 |-  ( ph -> ( ps -> x e. A ) )
2 1 alrimiv
 |-  ( ph -> A. x ( ps -> x e. A ) )
3 abss
 |-  ( { x | ps } C_ A <-> A. x ( ps -> x e. A ) )
4 2 3 sylibr
 |-  ( ph -> { x | ps } C_ A )