Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006) (Proof shortened by SN, 22-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abssdv.1 | |- ( ph -> ( ps -> x e. A ) ) |
|
| Assertion | abssdv | |- ( ph -> { x | ps } C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | |- ( ph -> ( ps -> x e. A ) ) |
|
| 2 | 1 | ss2abdv | |- ( ph -> { x | ps } C_ { x | x e. A } ) |
| 3 | abid1 | |- A = { x | x e. A } |
|
| 4 | 2 3 | sseqtrrdi | |- ( ph -> { x | ps } C_ A ) |