Metamath Proof Explorer


Theorem abssdv

Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006) (Proof shortened by SN, 22-Dec-2024)

Ref Expression
Hypothesis abssdv.1
|- ( ph -> ( ps -> x e. A ) )
Assertion abssdv
|- ( ph -> { x | ps } C_ A )

Proof

Step Hyp Ref Expression
1 abssdv.1
 |-  ( ph -> ( ps -> x e. A ) )
2 1 ss2abdv
 |-  ( ph -> { x | ps } C_ { x | x e. A } )
3 abid1
 |-  A = { x | x e. A }
4 2 3 sseqtrrdi
 |-  ( ph -> { x | ps } C_ A )