Description: Obsolete version of abssdv as of 12-Dec-2024. (Contributed by NM, 20-Jan-2006) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abssdv.1 | |- ( ph -> ( ps -> x e. A ) ) |
|
| Assertion | abssdvOLD | |- ( ph -> { x | ps } C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | |- ( ph -> ( ps -> x e. A ) ) |
|
| 2 | 1 | alrimiv | |- ( ph -> A. x ( ps -> x e. A ) ) |
| 3 | abss | |- ( { x | ps } C_ A <-> A. x ( ps -> x e. A ) ) |
|
| 4 | 2 3 | sylibr | |- ( ph -> { x | ps } C_ A ) |