Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
|- ( A e. V -> ~P A e. _V ) |
2 |
|
df-pw |
|- ~P A = { x | x C_ A } |
3 |
2
|
eleq1i |
|- ( ~P A e. _V <-> { x | x C_ A } e. _V ) |
4 |
|
simpl |
|- ( ( x C_ A /\ ph ) -> x C_ A ) |
5 |
4
|
ss2abi |
|- { x | ( x C_ A /\ ph ) } C_ { x | x C_ A } |
6 |
|
ssexg |
|- ( ( { x | ( x C_ A /\ ph ) } C_ { x | x C_ A } /\ { x | x C_ A } e. _V ) -> { x | ( x C_ A /\ ph ) } e. _V ) |
7 |
5 6
|
mpan |
|- ( { x | x C_ A } e. _V -> { x | ( x C_ A /\ ph ) } e. _V ) |
8 |
3 7
|
sylbi |
|- ( ~P A e. _V -> { x | ( x C_ A /\ ph ) } e. _V ) |
9 |
1 8
|
syl |
|- ( A e. V -> { x | ( x C_ A /\ ph ) } e. _V ) |