Description: Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abssf.1 | |- F/_ x A  | 
					|
| Assertion | abssf | |- ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abssf.1 | |- F/_ x A  | 
						|
| 2 | 1 | abid2f |  |-  { x | x e. A } = A | 
						
| 3 | 2 | sseq2i |  |-  ( { x | ph } C_ { x | x e. A } <-> { x | ph } C_ A ) | 
						
| 4 | ss2ab |  |-  ( { x | ph } C_ { x | x e. A } <-> A. x ( ph -> x e. A ) ) | 
						|
| 5 | 3 4 | bitr3i |  |-  ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) ) |