Description: Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abssf.1 | |- F/_ x A |
|
Assertion | abssf | |- ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssf.1 | |- F/_ x A |
|
2 | 1 | abid2f | |- { x | x e. A } = A |
3 | 2 | sseq2i | |- ( { x | ph } C_ { x | x e. A } <-> { x | ph } C_ A ) |
4 | ss2ab | |- ( { x | ph } C_ { x | x e. A } <-> A. x ( ph -> x e. A ) ) |
|
5 | 3 4 | bitr3i | |- ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) ) |