Metamath Proof Explorer


Theorem abssf

Description: Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis abssf.1
|- F/_ x A
Assertion abssf
|- ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) )

Proof

Step Hyp Ref Expression
1 abssf.1
 |-  F/_ x A
2 1 abid2f
 |-  { x | x e. A } = A
3 2 sseq2i
 |-  ( { x | ph } C_ { x | x e. A } <-> { x | ph } C_ A )
4 ss2ab
 |-  ( { x | ph } C_ { x | x e. A } <-> A. x ( ph -> x e. A ) )
5 3 4 bitr3i
 |-  ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) )