Metamath Proof Explorer


Theorem abssq

Description: Square can be moved in and out of absolute value. (Contributed by Scott Fenton, 18-Apr-2014) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion abssq
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( abs ` ( A ^ 2 ) ) )

Proof

Step Hyp Ref Expression
1 2nn0
 |-  2 e. NN0
2 absexp
 |-  ( ( A e. CC /\ 2 e. NN0 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) )
3 1 2 mpan2
 |-  ( A e. CC -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) )
4 3 eqcomd
 |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( abs ` ( A ^ 2 ) ) )