Metamath Proof Explorer


Theorem abssub

Description: Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion abssub
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) )

Proof

Step Hyp Ref Expression
1 subcl
 |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC )
2 absneg
 |-  ( ( A - B ) e. CC -> ( abs ` -u ( A - B ) ) = ( abs ` ( A - B ) ) )
3 1 2 syl
 |-  ( ( A e. CC /\ B e. CC ) -> ( abs ` -u ( A - B ) ) = ( abs ` ( A - B ) ) )
4 negsubdi2
 |-  ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( B - A ) )
5 4 fveq2d
 |-  ( ( A e. CC /\ B e. CC ) -> ( abs ` -u ( A - B ) ) = ( abs ` ( B - A ) ) )
6 3 5 eqtr3d
 |-  ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) )