| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resubcl |  |-  ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( B e. RR /\ A e. RR /\ A <_ B ) -> ( B - A ) e. RR ) | 
						
							| 3 |  | subge0 |  |-  ( ( B e. RR /\ A e. RR ) -> ( 0 <_ ( B - A ) <-> A <_ B ) ) | 
						
							| 4 | 3 | biimp3ar |  |-  ( ( B e. RR /\ A e. RR /\ A <_ B ) -> 0 <_ ( B - A ) ) | 
						
							| 5 |  | absid |  |-  ( ( ( B - A ) e. RR /\ 0 <_ ( B - A ) ) -> ( abs ` ( B - A ) ) = ( B - A ) ) | 
						
							| 6 | 2 4 5 | syl2anc |  |-  ( ( B e. RR /\ A e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) | 
						
							| 7 | 6 | 3com12 |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |