Metamath Proof Explorer


Theorem abssubge0

Description: Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008)

Ref Expression
Assertion abssubge0
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) )

Proof

Step Hyp Ref Expression
1 resubcl
 |-  ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR )
2 1 3adant3
 |-  ( ( B e. RR /\ A e. RR /\ A <_ B ) -> ( B - A ) e. RR )
3 subge0
 |-  ( ( B e. RR /\ A e. RR ) -> ( 0 <_ ( B - A ) <-> A <_ B ) )
4 3 biimp3ar
 |-  ( ( B e. RR /\ A e. RR /\ A <_ B ) -> 0 <_ ( B - A ) )
5 absid
 |-  ( ( ( B - A ) e. RR /\ 0 <_ ( B - A ) ) -> ( abs ` ( B - A ) ) = ( B - A ) )
6 2 4 5 syl2anc
 |-  ( ( B e. RR /\ A e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) )
7 6 3com12
 |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) )