Step |
Hyp |
Ref |
Expression |
1 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
2 |
1
|
3adant3 |
|- ( ( B e. RR /\ A e. RR /\ A <_ B ) -> ( B - A ) e. RR ) |
3 |
|
subge0 |
|- ( ( B e. RR /\ A e. RR ) -> ( 0 <_ ( B - A ) <-> A <_ B ) ) |
4 |
3
|
biimp3ar |
|- ( ( B e. RR /\ A e. RR /\ A <_ B ) -> 0 <_ ( B - A ) ) |
5 |
|
absid |
|- ( ( ( B - A ) e. RR /\ 0 <_ ( B - A ) ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |
6 |
2 4 5
|
syl2anc |
|- ( ( B e. RR /\ A e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |
7 |
6
|
3com12 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |