Description: Absolute value of a nonnegative difference. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | absltd.1 | |- ( ph -> A e. RR ) |
|
absltd.2 | |- ( ph -> B e. RR ) |
||
abssubge0d.2 | |- ( ph -> A <_ B ) |
||
Assertion | abssubge0d | |- ( ph -> ( abs ` ( B - A ) ) = ( B - A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absltd.1 | |- ( ph -> A e. RR ) |
|
2 | absltd.2 | |- ( ph -> B e. RR ) |
|
3 | abssubge0d.2 | |- ( ph -> A <_ B ) |
|
4 | abssubge0 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( abs ` ( B - A ) ) = ( B - A ) ) |