Metamath Proof Explorer


Theorem abssubi

Description: Swapping order of subtraction doesn't change the absolute value. Example of Apostol p. 363. (Contributed by NM, 1-Oct-1999)

Ref Expression
Hypotheses absvalsqi.1
|- A e. CC
abssub.2
|- B e. CC
Assertion abssubi
|- ( abs ` ( A - B ) ) = ( abs ` ( B - A ) )

Proof

Step Hyp Ref Expression
1 absvalsqi.1
 |-  A e. CC
2 abssub.2
 |-  B e. CC
3 abssub
 |-  ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) )
4 1 2 3 mp2an
 |-  ( abs ` ( A - B ) ) = ( abs ` ( B - A ) )