| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 3 |  | abssub |  |-  ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) ) | 
						
							| 6 |  | abssubge0 |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) | 
						
							| 7 | 5 6 | eqtrd |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |