Description: The distance of two distinct complex number is a strictly positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | abssubrp | |- ( ( A e. CC /\ B e. CC /\ A =/= B ) -> ( abs ` ( A - B ) ) e. RR+ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
2 | 1 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ A =/= B ) -> ( A - B ) e. CC ) |
3 | simp1 | |- ( ( A e. CC /\ B e. CC /\ A =/= B ) -> A e. CC ) |
|
4 | simp2 | |- ( ( A e. CC /\ B e. CC /\ A =/= B ) -> B e. CC ) |
|
5 | simp3 | |- ( ( A e. CC /\ B e. CC /\ A =/= B ) -> A =/= B ) |
|
6 | 3 4 5 | subne0d | |- ( ( A e. CC /\ B e. CC /\ A =/= B ) -> ( A - B ) =/= 0 ) |
7 | 2 6 | absrpcld | |- ( ( A e. CC /\ B e. CC /\ A =/= B ) -> ( abs ` ( A - B ) ) e. RR+ ) |