Metamath Proof Explorer


Theorem abssubrp

Description: The distance of two distinct complex number is a strictly positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion abssubrp
|- ( ( A e. CC /\ B e. CC /\ A =/= B ) -> ( abs ` ( A - B ) ) e. RR+ )

Proof

Step Hyp Ref Expression
1 subcl
 |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC )
2 1 3adant3
 |-  ( ( A e. CC /\ B e. CC /\ A =/= B ) -> ( A - B ) e. CC )
3 simp1
 |-  ( ( A e. CC /\ B e. CC /\ A =/= B ) -> A e. CC )
4 simp2
 |-  ( ( A e. CC /\ B e. CC /\ A =/= B ) -> B e. CC )
5 simp3
 |-  ( ( A e. CC /\ B e. CC /\ A =/= B ) -> A =/= B )
6 3 4 5 subne0d
 |-  ( ( A e. CC /\ B e. CC /\ A =/= B ) -> ( A - B ) =/= 0 )
7 2 6 absrpcld
 |-  ( ( A e. CC /\ B e. CC /\ A =/= B ) -> ( abs ` ( A - B ) ) e. RR+ )