Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
1
|
a1i |
|- ( ( A e. CC /\ B e. CC ) -> 2 e. RR ) |
3 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
4 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
5 |
4
|
cjcld |
|- ( ( A e. CC /\ B e. CC ) -> ( * ` B ) e. CC ) |
6 |
3 5
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. ( * ` B ) ) e. CC ) |
7 |
6
|
recld |
|- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A x. ( * ` B ) ) ) e. RR ) |
8 |
2 7
|
remulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) e. RR ) |
9 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
10 |
3 9
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` A ) e. RR ) |
11 |
|
abscl |
|- ( B e. CC -> ( abs ` B ) e. RR ) |
12 |
4 11
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` B ) e. RR ) |
13 |
10 12
|
remulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) x. ( abs ` B ) ) e. RR ) |
14 |
2 13
|
remulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) e. RR ) |
15 |
10
|
resqcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) ^ 2 ) e. RR ) |
16 |
12
|
resqcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` B ) ^ 2 ) e. RR ) |
17 |
15 16
|
readdcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) e. RR ) |
18 |
|
releabs |
|- ( ( A x. ( * ` B ) ) e. CC -> ( Re ` ( A x. ( * ` B ) ) ) <_ ( abs ` ( A x. ( * ` B ) ) ) ) |
19 |
6 18
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A x. ( * ` B ) ) ) <_ ( abs ` ( A x. ( * ` B ) ) ) ) |
20 |
|
absmul |
|- ( ( A e. CC /\ ( * ` B ) e. CC ) -> ( abs ` ( A x. ( * ` B ) ) ) = ( ( abs ` A ) x. ( abs ` ( * ` B ) ) ) ) |
21 |
3 5 20
|
syl2anc |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A x. ( * ` B ) ) ) = ( ( abs ` A ) x. ( abs ` ( * ` B ) ) ) ) |
22 |
|
abscj |
|- ( B e. CC -> ( abs ` ( * ` B ) ) = ( abs ` B ) ) |
23 |
4 22
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( * ` B ) ) = ( abs ` B ) ) |
24 |
23
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) x. ( abs ` ( * ` B ) ) ) = ( ( abs ` A ) x. ( abs ` B ) ) ) |
25 |
21 24
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A x. ( * ` B ) ) ) = ( ( abs ` A ) x. ( abs ` B ) ) ) |
26 |
19 25
|
breqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A x. ( * ` B ) ) ) <_ ( ( abs ` A ) x. ( abs ` B ) ) ) |
27 |
|
2rp |
|- 2 e. RR+ |
28 |
27
|
a1i |
|- ( ( A e. CC /\ B e. CC ) -> 2 e. RR+ ) |
29 |
7 13 28
|
lemul2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( Re ` ( A x. ( * ` B ) ) ) <_ ( ( abs ` A ) x. ( abs ` B ) ) <-> ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) <_ ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) ) |
30 |
26 29
|
mpbid |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) <_ ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) |
31 |
8 14 17 30
|
leadd2dd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) <_ ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) ) |
32 |
|
sqabsadd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A + B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) ) |
33 |
10
|
recnd |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` A ) e. CC ) |
34 |
12
|
recnd |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` B ) e. CC ) |
35 |
|
binom2 |
|- ( ( ( abs ` A ) e. CC /\ ( abs ` B ) e. CC ) -> ( ( ( abs ` A ) + ( abs ` B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) + ( ( abs ` B ) ^ 2 ) ) ) |
36 |
33 34 35
|
syl2anc |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` A ) + ( abs ` B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) + ( ( abs ` B ) ^ 2 ) ) ) |
37 |
15
|
recnd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) ^ 2 ) e. CC ) |
38 |
14
|
recnd |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) e. CC ) |
39 |
16
|
recnd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` B ) ^ 2 ) e. CC ) |
40 |
37 38 39
|
add32d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) + ( ( abs ` B ) ^ 2 ) ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) ) |
41 |
36 40
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` A ) + ( abs ` B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) ) |
42 |
31 32 41
|
3brtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A + B ) ) ^ 2 ) <_ ( ( ( abs ` A ) + ( abs ` B ) ) ^ 2 ) ) |
43 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
44 |
|
abscl |
|- ( ( A + B ) e. CC -> ( abs ` ( A + B ) ) e. RR ) |
45 |
43 44
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + B ) ) e. RR ) |
46 |
10 12
|
readdcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) + ( abs ` B ) ) e. RR ) |
47 |
|
absge0 |
|- ( ( A + B ) e. CC -> 0 <_ ( abs ` ( A + B ) ) ) |
48 |
43 47
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> 0 <_ ( abs ` ( A + B ) ) ) |
49 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
50 |
3 49
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> 0 <_ ( abs ` A ) ) |
51 |
|
absge0 |
|- ( B e. CC -> 0 <_ ( abs ` B ) ) |
52 |
4 51
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> 0 <_ ( abs ` B ) ) |
53 |
10 12 50 52
|
addge0d |
|- ( ( A e. CC /\ B e. CC ) -> 0 <_ ( ( abs ` A ) + ( abs ` B ) ) ) |
54 |
45 46 48 53
|
le2sqd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) <-> ( ( abs ` ( A + B ) ) ^ 2 ) <_ ( ( ( abs ` A ) + ( abs ` B ) ) ^ 2 ) ) ) |
55 |
42 54
|
mpbird |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) ) |