Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abscld.1 | |- ( ph -> A e. CC ) |
|
| abssubd.2 | |- ( ph -> B e. CC ) |
||
| Assertion | abstrid | |- ( ph -> ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | |- ( ph -> A e. CC ) |
|
| 2 | abssubd.2 | |- ( ph -> B e. CC ) |
|
| 3 | abstri | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) ) |