Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | absvalsqi.1 | |- A e. CC |
|
abssub.2 | |- B e. CC |
||
Assertion | abstrii | |- ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absvalsqi.1 | |- A e. CC |
|
2 | abssub.2 | |- B e. CC |
|
3 | abstri | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) |