Metamath Proof Explorer


Theorem abstrii

Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypotheses absvalsqi.1
|- A e. CC
abssub.2
|- B e. CC
Assertion abstrii
|- ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) )

Proof

Step Hyp Ref Expression
1 absvalsqi.1
 |-  A e. CC
2 abssub.2
 |-  B e. CC
3 abstri
 |-  ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) )
4 1 2 3 mp2an
 |-  ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) )