Metamath Proof Explorer


Theorem absval2

Description: Value of absolute value function. Definition 10.36 of Gleason p. 133. (Contributed by NM, 17-Mar-2005)

Ref Expression
Assertion absval2
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 absval
 |-  ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) )
2 cjmulval
 |-  ( A e. CC -> ( A x. ( * ` A ) ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) )
3 2 fveq2d
 |-  ( A e. CC -> ( sqrt ` ( A x. ( * ` A ) ) ) = ( sqrt ` ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) )
4 1 3 eqtrd
 |-  ( A e. CC -> ( abs ` A ) = ( sqrt ` ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) )