Metamath Proof Explorer


Theorem absval2d

Description: Value of absolute value function. Definition 10.36 of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1
|- ( ph -> A e. CC )
Assertion absval2d
|- ( ph -> ( abs ` A ) = ( sqrt ` ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 abscld.1
 |-  ( ph -> A e. CC )
2 absval2
 |-  ( A e. CC -> ( abs ` A ) = ( sqrt ` ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) )
3 1 2 syl
 |-  ( ph -> ( abs ` A ) = ( sqrt ` ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) )