Step |
Hyp |
Ref |
Expression |
1 |
|
absval |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
2 |
1
|
oveq1d |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) ^ 2 ) ) |
3 |
|
cjmulrcl |
|- ( A e. CC -> ( A x. ( * ` A ) ) e. RR ) |
4 |
|
cjmulge0 |
|- ( A e. CC -> 0 <_ ( A x. ( * ` A ) ) ) |
5 |
|
resqrtth |
|- ( ( ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) -> ( ( sqrt ` ( A x. ( * ` A ) ) ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
6 |
3 4 5
|
syl2anc |
|- ( A e. CC -> ( ( sqrt ` ( A x. ( * ` A ) ) ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
7 |
2 6
|
eqtrd |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |