Metamath Proof Explorer


Theorem absvalsq2

Description: Square of value of absolute value function. (Contributed by NM, 1-Feb-2007)

Ref Expression
Assertion absvalsq2
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) )

Proof

Step Hyp Ref Expression
1 absvalsq
 |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) )
2 cjmulval
 |-  ( A e. CC -> ( A x. ( * ` A ) ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) )
3 1 2 eqtrd
 |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) )