Metamath Proof Explorer


Theorem absvalsq2i

Description: Square of value of absolute value function. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypothesis absvalsqi.1
|- A e. CC
Assertion absvalsq2i
|- ( ( abs ` A ) ^ 2 ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) )

Proof

Step Hyp Ref Expression
1 absvalsqi.1
 |-  A e. CC
2 absvalsq2
 |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) )
3 1 2 ax-mp
 |-  ( ( abs ` A ) ^ 2 ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) )