| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
|- ( ( abs ` A ) = A -> ( ( abs ` A ) e. ZZ <-> A e. ZZ ) ) |
| 2 |
1
|
bicomd |
|- ( ( abs ` A ) = A -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) |
| 3 |
2
|
a1i |
|- ( A e. RR -> ( ( abs ` A ) = A -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) ) |
| 4 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 5 |
|
znegclb |
|- ( A e. CC -> ( A e. ZZ <-> -u A e. ZZ ) ) |
| 6 |
4 5
|
syl |
|- ( A e. RR -> ( A e. ZZ <-> -u A e. ZZ ) ) |
| 7 |
|
eleq1 |
|- ( ( abs ` A ) = -u A -> ( ( abs ` A ) e. ZZ <-> -u A e. ZZ ) ) |
| 8 |
7
|
bibi2d |
|- ( ( abs ` A ) = -u A -> ( ( A e. ZZ <-> ( abs ` A ) e. ZZ ) <-> ( A e. ZZ <-> -u A e. ZZ ) ) ) |
| 9 |
6 8
|
syl5ibrcom |
|- ( A e. RR -> ( ( abs ` A ) = -u A -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) ) |
| 10 |
|
absor |
|- ( A e. RR -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
| 11 |
3 9 10
|
mpjaod |
|- ( A e. RR -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) |