Metamath Proof Explorer


Theorem abv

Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication ( bj-abv ) requires fewer axioms. (Contributed by BJ, 19-Mar-2021) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 30-Aug-2024) (Proof shortened by BJ, 30-Aug-2024)

Ref Expression
Assertion abv
|- ( { x | ph } = _V <-> A. x ph )

Proof

Step Hyp Ref Expression
1 dfcleq
 |-  ( { x | ph } = { x | T. } <-> A. y ( y e. { x | ph } <-> y e. { x | T. } ) )
2 vextru
 |-  y e. { x | T. }
3 2 tbt
 |-  ( y e. { x | ph } <-> ( y e. { x | ph } <-> y e. { x | T. } ) )
4 df-clab
 |-  ( y e. { x | ph } <-> [ y / x ] ph )
5 3 4 bitr3i
 |-  ( ( y e. { x | ph } <-> y e. { x | T. } ) <-> [ y / x ] ph )
6 5 albii
 |-  ( A. y ( y e. { x | ph } <-> y e. { x | T. } ) <-> A. y [ y / x ] ph )
7 1 6 bitri
 |-  ( { x | ph } = { x | T. } <-> A. y [ y / x ] ph )
8 dfv2
 |-  _V = { x | T. }
9 8 eqeq2i
 |-  ( { x | ph } = _V <-> { x | ph } = { x | T. } )
10 nfv
 |-  F/ y ph
11 10 sb8v
 |-  ( A. x ph <-> A. y [ y / x ] ph )
12 7 9 11 3bitr4i
 |-  ( { x | ph } = _V <-> A. x ph )