Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abv0.a | |- A = ( AbsVal ` R ) |
|
abv0.z | |- .0. = ( 0g ` R ) |
||
Assertion | abv0 | |- ( F e. A -> ( F ` .0. ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abv0.a | |- A = ( AbsVal ` R ) |
|
2 | abv0.z | |- .0. = ( 0g ` R ) |
|
3 | 1 | abvrcl | |- ( F e. A -> R e. Ring ) |
4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
5 | 4 2 | ring0cl | |- ( R e. Ring -> .0. e. ( Base ` R ) ) |
6 | 3 5 | syl | |- ( F e. A -> .0. e. ( Base ` R ) ) |
7 | eqid | |- .0. = .0. |
|
8 | 1 4 2 | abveq0 | |- ( ( F e. A /\ .0. e. ( Base ` R ) ) -> ( ( F ` .0. ) = 0 <-> .0. = .0. ) ) |
9 | 7 8 | mpbiri | |- ( ( F e. A /\ .0. e. ( Base ` R ) ) -> ( F ` .0. ) = 0 ) |
10 | 6 9 | mpdan | |- ( F e. A -> ( F ` .0. ) = 0 ) |