Metamath Proof Explorer


Theorem abv0

Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abv0.a
|- A = ( AbsVal ` R )
abv0.z
|- .0. = ( 0g ` R )
Assertion abv0
|- ( F e. A -> ( F ` .0. ) = 0 )

Proof

Step Hyp Ref Expression
1 abv0.a
 |-  A = ( AbsVal ` R )
2 abv0.z
 |-  .0. = ( 0g ` R )
3 1 abvrcl
 |-  ( F e. A -> R e. Ring )
4 eqid
 |-  ( Base ` R ) = ( Base ` R )
5 4 2 ring0cl
 |-  ( R e. Ring -> .0. e. ( Base ` R ) )
6 3 5 syl
 |-  ( F e. A -> .0. e. ( Base ` R ) )
7 eqid
 |-  .0. = .0.
8 1 4 2 abveq0
 |-  ( ( F e. A /\ .0. e. ( Base ` R ) ) -> ( ( F ` .0. ) = 0 <-> .0. = .0. ) )
9 7 8 mpbiri
 |-  ( ( F e. A /\ .0. e. ( Base ` R ) ) -> ( F ` .0. ) = 0 )
10 6 9 mpdan
 |-  ( F e. A -> ( F ` .0. ) = 0 )