Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | |- A = ( AbsVal ` R ) | |
| abv0.z | |- .0. = ( 0g ` R ) | ||
| Assertion | abv0 | |- ( F e. A -> ( F ` .0. ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abv0.a | |- A = ( AbsVal ` R ) | |
| 2 | abv0.z | |- .0. = ( 0g ` R ) | |
| 3 | 1 | abvrcl | |- ( F e. A -> R e. Ring ) | 
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) | |
| 5 | 4 2 | ring0cl | |- ( R e. Ring -> .0. e. ( Base ` R ) ) | 
| 6 | 3 5 | syl | |- ( F e. A -> .0. e. ( Base ` R ) ) | 
| 7 | eqid | |- .0. = .0. | |
| 8 | 1 4 2 | abveq0 | |- ( ( F e. A /\ .0. e. ( Base ` R ) ) -> ( ( F ` .0. ) = 0 <-> .0. = .0. ) ) | 
| 9 | 7 8 | mpbiri | |- ( ( F e. A /\ .0. e. ( Base ` R ) ) -> ( F ` .0. ) = 0 ) | 
| 10 | 6 9 | mpdan | |- ( F e. A -> ( F ` .0. ) = 0 ) |