Description: The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abv0.a | |- A = ( AbsVal ` R ) |
|
abv1.p | |- .1. = ( 1r ` R ) |
||
Assertion | abv1 | |- ( ( R e. DivRing /\ F e. A ) -> ( F ` .1. ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abv0.a | |- A = ( AbsVal ` R ) |
|
2 | abv1.p | |- .1. = ( 1r ` R ) |
|
3 | id | |- ( F e. A -> F e. A ) |
|
4 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
5 | 4 2 | drngunz | |- ( R e. DivRing -> .1. =/= ( 0g ` R ) ) |
6 | 1 2 4 | abv1z | |- ( ( F e. A /\ .1. =/= ( 0g ` R ) ) -> ( F ` .1. ) = 1 ) |
7 | 3 5 6 | syl2anr | |- ( ( R e. DivRing /\ F e. A ) -> ( F ` .1. ) = 1 ) |