Metamath Proof Explorer


Theorem abv1

Description: The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abv0.a
|- A = ( AbsVal ` R )
abv1.p
|- .1. = ( 1r ` R )
Assertion abv1
|- ( ( R e. DivRing /\ F e. A ) -> ( F ` .1. ) = 1 )

Proof

Step Hyp Ref Expression
1 abv0.a
 |-  A = ( AbsVal ` R )
2 abv1.p
 |-  .1. = ( 1r ` R )
3 id
 |-  ( F e. A -> F e. A )
4 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
5 4 2 drngunz
 |-  ( R e. DivRing -> .1. =/= ( 0g ` R ) )
6 1 2 4 abv1z
 |-  ( ( F e. A /\ .1. =/= ( 0g ` R ) ) -> ( F ` .1. ) = 1 )
7 3 5 6 syl2anr
 |-  ( ( R e. DivRing /\ F e. A ) -> ( F ` .1. ) = 1 )