Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
|- A = ( AbsVal ` R ) |
2 |
|
abv1.p |
|- .1. = ( 1r ` R ) |
3 |
|
abv1z.z |
|- .0. = ( 0g ` R ) |
4 |
1
|
abvrcl |
|- ( F e. A -> R e. Ring ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
5 2
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
7 |
4 6
|
syl |
|- ( F e. A -> .1. e. ( Base ` R ) ) |
8 |
1 5
|
abvcl |
|- ( ( F e. A /\ .1. e. ( Base ` R ) ) -> ( F ` .1. ) e. RR ) |
9 |
7 8
|
mpdan |
|- ( F e. A -> ( F ` .1. ) e. RR ) |
10 |
9
|
adantr |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) e. RR ) |
11 |
10
|
recnd |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) e. CC ) |
12 |
|
simpl |
|- ( ( F e. A /\ .1. =/= .0. ) -> F e. A ) |
13 |
7
|
adantr |
|- ( ( F e. A /\ .1. =/= .0. ) -> .1. e. ( Base ` R ) ) |
14 |
|
simpr |
|- ( ( F e. A /\ .1. =/= .0. ) -> .1. =/= .0. ) |
15 |
1 5 3
|
abvne0 |
|- ( ( F e. A /\ .1. e. ( Base ` R ) /\ .1. =/= .0. ) -> ( F ` .1. ) =/= 0 ) |
16 |
12 13 14 15
|
syl3anc |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) =/= 0 ) |
17 |
11 11 16
|
divcan3d |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( ( ( F ` .1. ) x. ( F ` .1. ) ) / ( F ` .1. ) ) = ( F ` .1. ) ) |
18 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
19 |
5 18 2
|
ringlidm |
|- ( ( R e. Ring /\ .1. e. ( Base ` R ) ) -> ( .1. ( .r ` R ) .1. ) = .1. ) |
20 |
4 13 19
|
syl2an2r |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( .1. ( .r ` R ) .1. ) = .1. ) |
21 |
20
|
fveq2d |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` ( .1. ( .r ` R ) .1. ) ) = ( F ` .1. ) ) |
22 |
1 5 18
|
abvmul |
|- ( ( F e. A /\ .1. e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) -> ( F ` ( .1. ( .r ` R ) .1. ) ) = ( ( F ` .1. ) x. ( F ` .1. ) ) ) |
23 |
12 13 13 22
|
syl3anc |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` ( .1. ( .r ` R ) .1. ) ) = ( ( F ` .1. ) x. ( F ` .1. ) ) ) |
24 |
21 23
|
eqtr3d |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) = ( ( F ` .1. ) x. ( F ` .1. ) ) ) |
25 |
24
|
oveq1d |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( ( F ` .1. ) / ( F ` .1. ) ) = ( ( ( F ` .1. ) x. ( F ` .1. ) ) / ( F ` .1. ) ) ) |
26 |
11 16
|
dividd |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( ( F ` .1. ) / ( F ` .1. ) ) = 1 ) |
27 |
25 26
|
eqtr3d |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( ( ( F ` .1. ) x. ( F ` .1. ) ) / ( F ` .1. ) ) = 1 ) |
28 |
17 27
|
eqtr3d |
|- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) = 1 ) |