Description: Alternate proof of abv , shorter but using more axioms. (Contributed by BJ, 19-Mar-2021) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | abvALT | |- ( { x | ph } = _V <-> A. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
2 | 1 | albii | |- ( A. y y e. { x | ph } <-> A. y [ y / x ] ph ) |
3 | eqv | |- ( { x | ph } = _V <-> A. y y e. { x | ph } ) |
|
4 | nfv | |- F/ y ph |
|
5 | 4 | sb8v | |- ( A. x ph <-> A. y [ y / x ] ph ) |
6 | 2 3 5 | 3bitr4i | |- ( { x | ph } = _V <-> A. x ph ) |