Metamath Proof Explorer


Theorem abvALT

Description: Alternate proof of abv , shorter but using more axioms. (Contributed by BJ, 19-Mar-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion abvALT
|- ( { x | ph } = _V <-> A. x ph )

Proof

Step Hyp Ref Expression
1 df-clab
 |-  ( y e. { x | ph } <-> [ y / x ] ph )
2 1 albii
 |-  ( A. y y e. { x | ph } <-> A. y [ y / x ] ph )
3 eqv
 |-  ( { x | ph } = _V <-> A. y y e. { x | ph } )
4 nfv
 |-  F/ y ph
5 4 sb8v
 |-  ( A. x ph <-> A. y [ y / x ] ph )
6 2 3 5 3bitr4i
 |-  ( { x | ph } = _V <-> A. x ph )