Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abvf.a | |- A = ( AbsVal ` R ) |
|
abvf.b | |- B = ( Base ` R ) |
||
Assertion | abvcl | |- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | |- A = ( AbsVal ` R ) |
|
2 | abvf.b | |- B = ( Base ` R ) |
|
3 | 1 2 | abvf | |- ( F e. A -> F : B --> RR ) |
4 | 3 | ffvelrnda | |- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |