Metamath Proof Explorer


Theorem abvcl

Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a
|- A = ( AbsVal ` R )
abvf.b
|- B = ( Base ` R )
Assertion abvcl
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR )

Proof

Step Hyp Ref Expression
1 abvf.a
 |-  A = ( AbsVal ` R )
2 abvf.b
 |-  B = ( Base ` R )
3 1 2 abvf
 |-  ( F e. A -> F : B --> RR )
4 3 ffvelrnda
 |-  ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR )