Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvf.a | |- A = ( AbsVal ` R ) |
|
| abvf.b | |- B = ( Base ` R ) |
||
| Assertion | abvcl | |- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvf.b | |- B = ( Base ` R ) |
|
| 3 | 1 2 | abvf | |- ( F e. A -> F : B --> RR ) |
| 4 | 3 | ffvelcdmda | |- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |