Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
|- A = ( AbsVal ` R ) |
2 |
|
abvneg.b |
|- B = ( Base ` R ) |
3 |
|
abvrec.z |
|- .0. = ( 0g ` R ) |
4 |
|
abvdiv.p |
|- ./ = ( /r ` R ) |
5 |
|
simplr |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> F e. A ) |
6 |
|
simpr1 |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> X e. B ) |
7 |
|
simpll |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> R e. DivRing ) |
8 |
|
simpr2 |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> Y e. B ) |
9 |
|
simpr3 |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> Y =/= .0. ) |
10 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
11 |
2 3 10
|
drnginvrcl |
|- ( ( R e. DivRing /\ Y e. B /\ Y =/= .0. ) -> ( ( invr ` R ) ` Y ) e. B ) |
12 |
7 8 9 11
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( ( invr ` R ) ` Y ) e. B ) |
13 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
14 |
1 2 13
|
abvmul |
|- ( ( F e. A /\ X e. B /\ ( ( invr ` R ) ` Y ) e. B ) -> ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( F ` ( ( invr ` R ) ` Y ) ) ) ) |
15 |
5 6 12 14
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( F ` ( ( invr ` R ) ` Y ) ) ) ) |
16 |
1 2 3 10
|
abvrec |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` ( ( invr ` R ) ` Y ) ) = ( 1 / ( F ` Y ) ) ) |
17 |
16
|
3adantr1 |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( ( invr ` R ) ` Y ) ) = ( 1 / ( F ` Y ) ) ) |
18 |
17
|
oveq2d |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( ( F ` X ) x. ( F ` ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( 1 / ( F ` Y ) ) ) ) |
19 |
15 18
|
eqtrd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( 1 / ( F ` Y ) ) ) ) |
20 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
21 |
2 20 3
|
drngunit |
|- ( R e. DivRing -> ( Y e. ( Unit ` R ) <-> ( Y e. B /\ Y =/= .0. ) ) ) |
22 |
7 21
|
syl |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( Y e. ( Unit ` R ) <-> ( Y e. B /\ Y =/= .0. ) ) ) |
23 |
8 9 22
|
mpbir2and |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> Y e. ( Unit ` R ) ) |
24 |
2 13 20 10 4
|
dvrval |
|- ( ( X e. B /\ Y e. ( Unit ` R ) ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
25 |
6 23 24
|
syl2anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
26 |
25
|
fveq2d |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ./ Y ) ) = ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) ) |
27 |
1 2
|
abvcl |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
28 |
5 6 27
|
syl2anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) e. RR ) |
29 |
28
|
recnd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) e. CC ) |
30 |
1 2
|
abvcl |
|- ( ( F e. A /\ Y e. B ) -> ( F ` Y ) e. RR ) |
31 |
5 8 30
|
syl2anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) e. RR ) |
32 |
31
|
recnd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) e. CC ) |
33 |
1 2 3
|
abvne0 |
|- ( ( F e. A /\ Y e. B /\ Y =/= .0. ) -> ( F ` Y ) =/= 0 ) |
34 |
5 8 9 33
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) =/= 0 ) |
35 |
29 32 34
|
divrecd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( ( F ` X ) / ( F ` Y ) ) = ( ( F ` X ) x. ( 1 / ( F ` Y ) ) ) ) |
36 |
19 26 35
|
3eqtr4d |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ./ Y ) ) = ( ( F ` X ) / ( F ` Y ) ) ) |