| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
|- A = ( AbsVal ` R ) |
| 2 |
|
abvneg.b |
|- B = ( Base ` R ) |
| 3 |
|
abvrec.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
abvdiv.p |
|- ./ = ( /r ` R ) |
| 5 |
|
simplr |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> F e. A ) |
| 6 |
|
simpr1 |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> X e. B ) |
| 7 |
|
simpll |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> R e. DivRing ) |
| 8 |
|
simpr2 |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> Y e. B ) |
| 9 |
|
simpr3 |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> Y =/= .0. ) |
| 10 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 11 |
2 3 10
|
drnginvrcl |
|- ( ( R e. DivRing /\ Y e. B /\ Y =/= .0. ) -> ( ( invr ` R ) ` Y ) e. B ) |
| 12 |
7 8 9 11
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( ( invr ` R ) ` Y ) e. B ) |
| 13 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 14 |
1 2 13
|
abvmul |
|- ( ( F e. A /\ X e. B /\ ( ( invr ` R ) ` Y ) e. B ) -> ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( F ` ( ( invr ` R ) ` Y ) ) ) ) |
| 15 |
5 6 12 14
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( F ` ( ( invr ` R ) ` Y ) ) ) ) |
| 16 |
1 2 3 10
|
abvrec |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` ( ( invr ` R ) ` Y ) ) = ( 1 / ( F ` Y ) ) ) |
| 17 |
16
|
3adantr1 |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( ( invr ` R ) ` Y ) ) = ( 1 / ( F ` Y ) ) ) |
| 18 |
17
|
oveq2d |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( ( F ` X ) x. ( F ` ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( 1 / ( F ` Y ) ) ) ) |
| 19 |
15 18
|
eqtrd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( 1 / ( F ` Y ) ) ) ) |
| 20 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 21 |
2 20 3
|
drngunit |
|- ( R e. DivRing -> ( Y e. ( Unit ` R ) <-> ( Y e. B /\ Y =/= .0. ) ) ) |
| 22 |
7 21
|
syl |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( Y e. ( Unit ` R ) <-> ( Y e. B /\ Y =/= .0. ) ) ) |
| 23 |
8 9 22
|
mpbir2and |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> Y e. ( Unit ` R ) ) |
| 24 |
2 13 20 10 4
|
dvrval |
|- ( ( X e. B /\ Y e. ( Unit ` R ) ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 25 |
6 23 24
|
syl2anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 26 |
25
|
fveq2d |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ./ Y ) ) = ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) ) |
| 27 |
1 2
|
abvcl |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
| 28 |
5 6 27
|
syl2anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) e. RR ) |
| 29 |
28
|
recnd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) e. CC ) |
| 30 |
1 2
|
abvcl |
|- ( ( F e. A /\ Y e. B ) -> ( F ` Y ) e. RR ) |
| 31 |
5 8 30
|
syl2anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) e. RR ) |
| 32 |
31
|
recnd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) e. CC ) |
| 33 |
1 2 3
|
abvne0 |
|- ( ( F e. A /\ Y e. B /\ Y =/= .0. ) -> ( F ` Y ) =/= 0 ) |
| 34 |
5 8 9 33
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) =/= 0 ) |
| 35 |
29 32 34
|
divrecd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( ( F ` X ) / ( F ` Y ) ) = ( ( F ` X ) x. ( 1 / ( F ` Y ) ) ) ) |
| 36 |
19 26 35
|
3eqtr4d |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ./ Y ) ) = ( ( F ` X ) / ( F ` Y ) ) ) |