Step |
Hyp |
Ref |
Expression |
1 |
|
abvf.a |
|- A = ( AbsVal ` R ) |
2 |
|
abvf.b |
|- B = ( Base ` R ) |
3 |
|
abveq0.z |
|- .0. = ( 0g ` R ) |
4 |
1
|
abvrcl |
|- ( F e. A -> R e. Ring ) |
5 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
7 |
1 2 5 6 3
|
isabv |
|- ( R e. Ring -> ( F e. A <-> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
8 |
4 7
|
syl |
|- ( F e. A -> ( F e. A <-> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
9 |
8
|
ibi |
|- ( F e. A -> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) |
10 |
|
simpl |
|- ( ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) -> ( ( F ` x ) = 0 <-> x = .0. ) ) |
11 |
10
|
ralimi |
|- ( A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) -> A. x e. B ( ( F ` x ) = 0 <-> x = .0. ) ) |
12 |
9 11
|
simpl2im |
|- ( F e. A -> A. x e. B ( ( F ` x ) = 0 <-> x = .0. ) ) |
13 |
|
fveqeq2 |
|- ( x = X -> ( ( F ` x ) = 0 <-> ( F ` X ) = 0 ) ) |
14 |
|
eqeq1 |
|- ( x = X -> ( x = .0. <-> X = .0. ) ) |
15 |
13 14
|
bibi12d |
|- ( x = X -> ( ( ( F ` x ) = 0 <-> x = .0. ) <-> ( ( F ` X ) = 0 <-> X = .0. ) ) ) |
16 |
15
|
rspccva |
|- ( ( A. x e. B ( ( F ` x ) = 0 <-> x = .0. ) /\ X e. B ) -> ( ( F ` X ) = 0 <-> X = .0. ) ) |
17 |
12 16
|
sylan |
|- ( ( F e. A /\ X e. B ) -> ( ( F ` X ) = 0 <-> X = .0. ) ) |