| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abvf.a |  |-  A = ( AbsVal ` R ) | 
						
							| 2 |  | abvf.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | abveq0.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 | 1 | abvrcl |  |-  ( F e. A -> R e. Ring ) | 
						
							| 5 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 6 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 7 | 1 2 5 6 3 | isabv |  |-  ( R e. Ring -> ( F e. A <-> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) | 
						
							| 8 | 4 7 | syl |  |-  ( F e. A -> ( F e. A <-> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) | 
						
							| 9 | 8 | ibi |  |-  ( F e. A -> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) | 
						
							| 10 |  | simpl |  |-  ( ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) -> ( ( F ` x ) = 0 <-> x = .0. ) ) | 
						
							| 11 | 10 | ralimi |  |-  ( A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) -> A. x e. B ( ( F ` x ) = 0 <-> x = .0. ) ) | 
						
							| 12 | 9 11 | simpl2im |  |-  ( F e. A -> A. x e. B ( ( F ` x ) = 0 <-> x = .0. ) ) | 
						
							| 13 |  | fveqeq2 |  |-  ( x = X -> ( ( F ` x ) = 0 <-> ( F ` X ) = 0 ) ) | 
						
							| 14 |  | eqeq1 |  |-  ( x = X -> ( x = .0. <-> X = .0. ) ) | 
						
							| 15 | 13 14 | bibi12d |  |-  ( x = X -> ( ( ( F ` x ) = 0 <-> x = .0. ) <-> ( ( F ` X ) = 0 <-> X = .0. ) ) ) | 
						
							| 16 | 15 | rspccva |  |-  ( ( A. x e. B ( ( F ` x ) = 0 <-> x = .0. ) /\ X e. B ) -> ( ( F ` X ) = 0 <-> X = .0. ) ) | 
						
							| 17 | 12 16 | sylan |  |-  ( ( F e. A /\ X e. B ) -> ( ( F ` X ) = 0 <-> X = .0. ) ) |