Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvf.a | |- A = ( AbsVal ` R ) |
|
| abvf.b | |- B = ( Base ` R ) |
||
| Assertion | abvf | |- ( F e. A -> F : B --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvf.b | |- B = ( Base ` R ) |
|
| 3 | 1 2 | abvfge0 | |- ( F e. A -> F : B --> ( 0 [,) +oo ) ) |
| 4 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 5 | fss | |- ( ( F : B --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : B --> RR ) |
|
| 6 | 3 4 5 | sylancl | |- ( F e. A -> F : B --> RR ) |