Metamath Proof Explorer


Theorem abvf

Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a
|- A = ( AbsVal ` R )
abvf.b
|- B = ( Base ` R )
Assertion abvf
|- ( F e. A -> F : B --> RR )

Proof

Step Hyp Ref Expression
1 abvf.a
 |-  A = ( AbsVal ` R )
2 abvf.b
 |-  B = ( Base ` R )
3 1 2 abvfge0
 |-  ( F e. A -> F : B --> ( 0 [,) +oo ) )
4 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
5 fss
 |-  ( ( F : B --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : B --> RR )
6 3 4 5 sylancl
 |-  ( F e. A -> F : B --> RR )