Description: The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abvf.a | |- A = ( AbsVal ` R ) |
|
abvf.b | |- B = ( Base ` R ) |
||
Assertion | abvge0 | |- ( ( F e. A /\ X e. B ) -> 0 <_ ( F ` X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | |- A = ( AbsVal ` R ) |
|
2 | abvf.b | |- B = ( Base ` R ) |
|
3 | 1 2 | abvfge0 | |- ( F e. A -> F : B --> ( 0 [,) +oo ) ) |
4 | 3 | ffvelrnda | |- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. ( 0 [,) +oo ) ) |
5 | elrege0 | |- ( ( F ` X ) e. ( 0 [,) +oo ) <-> ( ( F ` X ) e. RR /\ 0 <_ ( F ` X ) ) ) |
|
6 | 5 | simprbi | |- ( ( F ` X ) e. ( 0 [,) +oo ) -> 0 <_ ( F ` X ) ) |
7 | 4 6 | syl | |- ( ( F e. A /\ X e. B ) -> 0 <_ ( F ` X ) ) |