Description: The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvf.a | |- A = ( AbsVal ` R ) | |
| abvf.b | |- B = ( Base ` R ) | ||
| Assertion | abvge0 | |- ( ( F e. A /\ X e. B ) -> 0 <_ ( F ` X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abvf.a | |- A = ( AbsVal ` R ) | |
| 2 | abvf.b | |- B = ( Base ` R ) | |
| 3 | 1 2 | abvfge0 | |- ( F e. A -> F : B --> ( 0 [,) +oo ) ) | 
| 4 | 3 | ffvelcdmda | |- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. ( 0 [,) +oo ) ) | 
| 5 | elrege0 | |- ( ( F ` X ) e. ( 0 [,) +oo ) <-> ( ( F ` X ) e. RR /\ 0 <_ ( F ` X ) ) ) | |
| 6 | 5 | simprbi | |- ( ( F ` X ) e. ( 0 [,) +oo ) -> 0 <_ ( F ` X ) ) | 
| 7 | 4 6 | syl | |- ( ( F e. A /\ X e. B ) -> 0 <_ ( F ` X ) ) |