Metamath Proof Explorer


Theorem abvge0

Description: The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a
|- A = ( AbsVal ` R )
abvf.b
|- B = ( Base ` R )
Assertion abvge0
|- ( ( F e. A /\ X e. B ) -> 0 <_ ( F ` X ) )

Proof

Step Hyp Ref Expression
1 abvf.a
 |-  A = ( AbsVal ` R )
2 abvf.b
 |-  B = ( Base ` R )
3 1 2 abvfge0
 |-  ( F e. A -> F : B --> ( 0 [,) +oo ) )
4 3 ffvelrnda
 |-  ( ( F e. A /\ X e. B ) -> ( F ` X ) e. ( 0 [,) +oo ) )
5 elrege0
 |-  ( ( F ` X ) e. ( 0 [,) +oo ) <-> ( ( F ` X ) e. RR /\ 0 <_ ( F ` X ) ) )
6 5 simprbi
 |-  ( ( F ` X ) e. ( 0 [,) +oo ) -> 0 <_ ( F ` X ) )
7 4 6 syl
 |-  ( ( F e. A /\ X e. B ) -> 0 <_ ( F ` X ) )