Step |
Hyp |
Ref |
Expression |
1 |
|
abvf.a |
|- A = ( AbsVal ` R ) |
2 |
|
abvf.b |
|- B = ( Base ` R ) |
3 |
|
abveq0.z |
|- .0. = ( 0g ` R ) |
4 |
1 2
|
abvcl |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
5 |
4
|
3adant3 |
|- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) e. RR ) |
6 |
1 2
|
abvge0 |
|- ( ( F e. A /\ X e. B ) -> 0 <_ ( F ` X ) ) |
7 |
6
|
3adant3 |
|- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> 0 <_ ( F ` X ) ) |
8 |
1 2 3
|
abvne0 |
|- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) =/= 0 ) |
9 |
5 7 8
|
ne0gt0d |
|- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> 0 < ( F ` X ) ) |