| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvmet.x |
|- X = ( Base ` R ) |
| 2 |
|
abvmet.a |
|- A = ( AbsVal ` R ) |
| 3 |
|
abvmet.m |
|- .- = ( -g ` R ) |
| 4 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 5 |
2
|
abvrcl |
|- ( F e. A -> R e. Ring ) |
| 6 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 7 |
5 6
|
syl |
|- ( F e. A -> R e. Grp ) |
| 8 |
2 1
|
abvf |
|- ( F e. A -> F : X --> RR ) |
| 9 |
2 1 4
|
abveq0 |
|- ( ( F e. A /\ x e. X ) -> ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) ) |
| 10 |
2 1 3
|
abvsubtri |
|- ( ( F e. A /\ x e. X /\ y e. X ) -> ( F ` ( x .- y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 11 |
10
|
3expb |
|- ( ( F e. A /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x .- y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 12 |
1 3 4 7 8 9 11
|
nrmmetd |
|- ( F e. A -> ( F o. .- ) e. ( Met ` X ) ) |