| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvn0b.b |
|- A = ( AbsVal ` R ) |
| 2 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 5 |
|
eqid |
|- ( x e. ( Base ` R ) |-> if ( x = ( 0g ` R ) , 0 , 1 ) ) = ( x e. ( Base ` R ) |-> if ( x = ( 0g ` R ) , 0 , 1 ) ) |
| 6 |
1 3 4 5
|
abvtrivg |
|- ( R e. Domn -> ( x e. ( Base ` R ) |-> if ( x = ( 0g ` R ) , 0 , 1 ) ) e. A ) |
| 7 |
6
|
ne0d |
|- ( R e. Domn -> A =/= (/) ) |
| 8 |
2 7
|
jca |
|- ( R e. Domn -> ( R e. NzRing /\ A =/= (/) ) ) |
| 9 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
| 10 |
|
neanior |
|- ( ( y =/= ( 0g ` R ) /\ z =/= ( 0g ` R ) ) <-> -. ( y = ( 0g ` R ) \/ z = ( 0g ` R ) ) ) |
| 11 |
|
an4 |
|- ( ( ( y e. ( Base ` R ) /\ z e. ( Base ` R ) ) /\ ( y =/= ( 0g ` R ) /\ z =/= ( 0g ` R ) ) ) <-> ( ( y e. ( Base ` R ) /\ y =/= ( 0g ` R ) ) /\ ( z e. ( Base ` R ) /\ z =/= ( 0g ` R ) ) ) ) |
| 12 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 13 |
1 3 4 12
|
abvdom |
|- ( ( x e. A /\ ( y e. ( Base ` R ) /\ y =/= ( 0g ` R ) ) /\ ( z e. ( Base ` R ) /\ z =/= ( 0g ` R ) ) ) -> ( y ( .r ` R ) z ) =/= ( 0g ` R ) ) |
| 14 |
13
|
3expib |
|- ( x e. A -> ( ( ( y e. ( Base ` R ) /\ y =/= ( 0g ` R ) ) /\ ( z e. ( Base ` R ) /\ z =/= ( 0g ` R ) ) ) -> ( y ( .r ` R ) z ) =/= ( 0g ` R ) ) ) |
| 15 |
11 14
|
biimtrid |
|- ( x e. A -> ( ( ( y e. ( Base ` R ) /\ z e. ( Base ` R ) ) /\ ( y =/= ( 0g ` R ) /\ z =/= ( 0g ` R ) ) ) -> ( y ( .r ` R ) z ) =/= ( 0g ` R ) ) ) |
| 16 |
15
|
expdimp |
|- ( ( x e. A /\ ( y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( y =/= ( 0g ` R ) /\ z =/= ( 0g ` R ) ) -> ( y ( .r ` R ) z ) =/= ( 0g ` R ) ) ) |
| 17 |
10 16
|
biimtrrid |
|- ( ( x e. A /\ ( y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( -. ( y = ( 0g ` R ) \/ z = ( 0g ` R ) ) -> ( y ( .r ` R ) z ) =/= ( 0g ` R ) ) ) |
| 18 |
17
|
necon4bd |
|- ( ( x e. A /\ ( y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( y ( .r ` R ) z ) = ( 0g ` R ) -> ( y = ( 0g ` R ) \/ z = ( 0g ` R ) ) ) ) |
| 19 |
18
|
ralrimivva |
|- ( x e. A -> A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( y ( .r ` R ) z ) = ( 0g ` R ) -> ( y = ( 0g ` R ) \/ z = ( 0g ` R ) ) ) ) |
| 20 |
19
|
exlimiv |
|- ( E. x x e. A -> A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( y ( .r ` R ) z ) = ( 0g ` R ) -> ( y = ( 0g ` R ) \/ z = ( 0g ` R ) ) ) ) |
| 21 |
9 20
|
sylbi |
|- ( A =/= (/) -> A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( y ( .r ` R ) z ) = ( 0g ` R ) -> ( y = ( 0g ` R ) \/ z = ( 0g ` R ) ) ) ) |
| 22 |
21
|
anim2i |
|- ( ( R e. NzRing /\ A =/= (/) ) -> ( R e. NzRing /\ A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( y ( .r ` R ) z ) = ( 0g ` R ) -> ( y = ( 0g ` R ) \/ z = ( 0g ` R ) ) ) ) ) |
| 23 |
3 12 4
|
isdomn |
|- ( R e. Domn <-> ( R e. NzRing /\ A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( y ( .r ` R ) z ) = ( 0g ` R ) -> ( y = ( 0g ` R ) \/ z = ( 0g ` R ) ) ) ) ) |
| 24 |
22 23
|
sylibr |
|- ( ( R e. NzRing /\ A =/= (/) ) -> R e. Domn ) |
| 25 |
8 24
|
impbii |
|- ( R e. Domn <-> ( R e. NzRing /\ A =/= (/) ) ) |