Metamath Proof Explorer


Theorem abvne0

Description: The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a
|- A = ( AbsVal ` R )
abvf.b
|- B = ( Base ` R )
abveq0.z
|- .0. = ( 0g ` R )
Assertion abvne0
|- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) =/= 0 )

Proof

Step Hyp Ref Expression
1 abvf.a
 |-  A = ( AbsVal ` R )
2 abvf.b
 |-  B = ( Base ` R )
3 abveq0.z
 |-  .0. = ( 0g ` R )
4 1 2 3 abveq0
 |-  ( ( F e. A /\ X e. B ) -> ( ( F ` X ) = 0 <-> X = .0. ) )
5 4 necon3bid
 |-  ( ( F e. A /\ X e. B ) -> ( ( F ` X ) =/= 0 <-> X =/= .0. ) )
6 5 biimp3ar
 |-  ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) =/= 0 )