| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
|- A = ( AbsVal ` R ) |
| 2 |
|
abvneg.b |
|- B = ( Base ` R ) |
| 3 |
|
abvneg.p |
|- N = ( invg ` R ) |
| 4 |
1
|
abvrcl |
|- ( F e. A -> R e. Ring ) |
| 5 |
4
|
adantr |
|- ( ( F e. A /\ X e. B ) -> R e. Ring ) |
| 6 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 7 |
4 6
|
syl |
|- ( F e. A -> R e. Grp ) |
| 8 |
2 3
|
grpinvcl |
|- ( ( R e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 9 |
7 8
|
sylan |
|- ( ( F e. A /\ X e. B ) -> ( N ` X ) e. B ) |
| 10 |
|
simpr |
|- ( ( F e. A /\ X e. B ) -> X e. B ) |
| 11 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 12 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 13 |
2 11 12
|
ring1eq0 |
|- ( ( R e. Ring /\ ( N ` X ) e. B /\ X e. B ) -> ( ( 1r ` R ) = ( 0g ` R ) -> ( N ` X ) = X ) ) |
| 14 |
5 9 10 13
|
syl3anc |
|- ( ( F e. A /\ X e. B ) -> ( ( 1r ` R ) = ( 0g ` R ) -> ( N ` X ) = X ) ) |
| 15 |
14
|
imp |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( N ` X ) = X ) |
| 16 |
15
|
fveq2d |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( F ` ( N ` X ) ) = ( F ` X ) ) |
| 17 |
2 11
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 18 |
4 17
|
syl |
|- ( F e. A -> ( 1r ` R ) e. B ) |
| 19 |
2 3
|
grpinvcl |
|- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( 1r ` R ) ) e. B ) |
| 20 |
7 18 19
|
syl2anc |
|- ( F e. A -> ( N ` ( 1r ` R ) ) e. B ) |
| 21 |
1 2
|
abvcl |
|- ( ( F e. A /\ ( N ` ( 1r ` R ) ) e. B ) -> ( F ` ( N ` ( 1r ` R ) ) ) e. RR ) |
| 22 |
20 21
|
mpdan |
|- ( F e. A -> ( F ` ( N ` ( 1r ` R ) ) ) e. RR ) |
| 23 |
22
|
recnd |
|- ( F e. A -> ( F ` ( N ` ( 1r ` R ) ) ) e. CC ) |
| 24 |
23
|
sqvald |
|- ( F e. A -> ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` ( N ` ( 1r ` R ) ) ) ) ) |
| 25 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 26 |
1 2 25
|
abvmul |
|- ( ( F e. A /\ ( N ` ( 1r ` R ) ) e. B /\ ( N ` ( 1r ` R ) ) e. B ) -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( N ` ( 1r ` R ) ) ) ) = ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` ( N ` ( 1r ` R ) ) ) ) ) |
| 27 |
20 20 26
|
mpd3an23 |
|- ( F e. A -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( N ` ( 1r ` R ) ) ) ) = ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` ( N ` ( 1r ` R ) ) ) ) ) |
| 28 |
2 25 3 4 20 18
|
ringmneg2 |
|- ( F e. A -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( N ` ( 1r ` R ) ) ) = ( N ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( 1r ` R ) ) ) ) |
| 29 |
2 25 11 3 4 18
|
ringnegl |
|- ( F e. A -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( 1r ` R ) ) = ( N ` ( 1r ` R ) ) ) |
| 30 |
29
|
fveq2d |
|- ( F e. A -> ( N ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( 1r ` R ) ) ) = ( N ` ( N ` ( 1r ` R ) ) ) ) |
| 31 |
2 3
|
grpinvinv |
|- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( N ` ( 1r ` R ) ) ) = ( 1r ` R ) ) |
| 32 |
7 18 31
|
syl2anc |
|- ( F e. A -> ( N ` ( N ` ( 1r ` R ) ) ) = ( 1r ` R ) ) |
| 33 |
28 30 32
|
3eqtrd |
|- ( F e. A -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( N ` ( 1r ` R ) ) ) = ( 1r ` R ) ) |
| 34 |
33
|
fveq2d |
|- ( F e. A -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( N ` ( 1r ` R ) ) ) ) = ( F ` ( 1r ` R ) ) ) |
| 35 |
24 27 34
|
3eqtr2d |
|- ( F e. A -> ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( F ` ( 1r ` R ) ) ) |
| 36 |
35
|
adantr |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( F ` ( 1r ` R ) ) ) |
| 37 |
1 11 12
|
abv1z |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( F ` ( 1r ` R ) ) = 1 ) |
| 38 |
36 37
|
eqtrd |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = 1 ) |
| 39 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 40 |
38 39
|
eqtr4di |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 41 |
1 2
|
abvge0 |
|- ( ( F e. A /\ ( N ` ( 1r ` R ) ) e. B ) -> 0 <_ ( F ` ( N ` ( 1r ` R ) ) ) ) |
| 42 |
20 41
|
mpdan |
|- ( F e. A -> 0 <_ ( F ` ( N ` ( 1r ` R ) ) ) ) |
| 43 |
|
1re |
|- 1 e. RR |
| 44 |
|
0le1 |
|- 0 <_ 1 |
| 45 |
|
sq11 |
|- ( ( ( ( F ` ( N ` ( 1r ` R ) ) ) e. RR /\ 0 <_ ( F ` ( N ` ( 1r ` R ) ) ) ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) ) |
| 46 |
43 44 45
|
mpanr12 |
|- ( ( ( F ` ( N ` ( 1r ` R ) ) ) e. RR /\ 0 <_ ( F ` ( N ` ( 1r ` R ) ) ) ) -> ( ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) ) |
| 47 |
22 42 46
|
syl2anc |
|- ( F e. A -> ( ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) ) |
| 48 |
47
|
biimpa |
|- ( ( F e. A /\ ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( 1 ^ 2 ) ) -> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) |
| 49 |
40 48
|
syldan |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) |
| 50 |
49
|
adantlr |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) |
| 51 |
50
|
oveq1d |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` X ) ) = ( 1 x. ( F ` X ) ) ) |
| 52 |
|
simpl |
|- ( ( F e. A /\ X e. B ) -> F e. A ) |
| 53 |
20
|
adantr |
|- ( ( F e. A /\ X e. B ) -> ( N ` ( 1r ` R ) ) e. B ) |
| 54 |
1 2 25
|
abvmul |
|- ( ( F e. A /\ ( N ` ( 1r ` R ) ) e. B /\ X e. B ) -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) = ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` X ) ) ) |
| 55 |
52 53 10 54
|
syl3anc |
|- ( ( F e. A /\ X e. B ) -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) = ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` X ) ) ) |
| 56 |
2 25 11 3 5 10
|
ringnegl |
|- ( ( F e. A /\ X e. B ) -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) = ( N ` X ) ) |
| 57 |
56
|
fveq2d |
|- ( ( F e. A /\ X e. B ) -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) = ( F ` ( N ` X ) ) ) |
| 58 |
55 57
|
eqtr3d |
|- ( ( F e. A /\ X e. B ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` X ) ) = ( F ` ( N ` X ) ) ) |
| 59 |
58
|
adantr |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` X ) ) = ( F ` ( N ` X ) ) ) |
| 60 |
51 59
|
eqtr3d |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 1 x. ( F ` X ) ) = ( F ` ( N ` X ) ) ) |
| 61 |
1 2
|
abvcl |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
| 62 |
61
|
recnd |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. CC ) |
| 63 |
62
|
mullidd |
|- ( ( F e. A /\ X e. B ) -> ( 1 x. ( F ` X ) ) = ( F ` X ) ) |
| 64 |
63
|
adantr |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 1 x. ( F ` X ) ) = ( F ` X ) ) |
| 65 |
60 64
|
eqtr3d |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( F ` ( N ` X ) ) = ( F ` X ) ) |
| 66 |
16 65
|
pm2.61dane |
|- ( ( F e. A /\ X e. B ) -> ( F ` ( N ` X ) ) = ( F ` X ) ) |