Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
|- A = ( AbsVal ` R ) |
2 |
|
abvneg.b |
|- B = ( Base ` R ) |
3 |
|
abvneg.p |
|- N = ( invg ` R ) |
4 |
1
|
abvrcl |
|- ( F e. A -> R e. Ring ) |
5 |
4
|
adantr |
|- ( ( F e. A /\ X e. B ) -> R e. Ring ) |
6 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
7 |
4 6
|
syl |
|- ( F e. A -> R e. Grp ) |
8 |
2 3
|
grpinvcl |
|- ( ( R e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
9 |
7 8
|
sylan |
|- ( ( F e. A /\ X e. B ) -> ( N ` X ) e. B ) |
10 |
|
simpr |
|- ( ( F e. A /\ X e. B ) -> X e. B ) |
11 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
12 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
13 |
2 11 12
|
ring1eq0 |
|- ( ( R e. Ring /\ ( N ` X ) e. B /\ X e. B ) -> ( ( 1r ` R ) = ( 0g ` R ) -> ( N ` X ) = X ) ) |
14 |
5 9 10 13
|
syl3anc |
|- ( ( F e. A /\ X e. B ) -> ( ( 1r ` R ) = ( 0g ` R ) -> ( N ` X ) = X ) ) |
15 |
14
|
imp |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( N ` X ) = X ) |
16 |
15
|
fveq2d |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( F ` ( N ` X ) ) = ( F ` X ) ) |
17 |
2 11
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
18 |
4 17
|
syl |
|- ( F e. A -> ( 1r ` R ) e. B ) |
19 |
2 3
|
grpinvcl |
|- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( 1r ` R ) ) e. B ) |
20 |
7 18 19
|
syl2anc |
|- ( F e. A -> ( N ` ( 1r ` R ) ) e. B ) |
21 |
1 2
|
abvcl |
|- ( ( F e. A /\ ( N ` ( 1r ` R ) ) e. B ) -> ( F ` ( N ` ( 1r ` R ) ) ) e. RR ) |
22 |
20 21
|
mpdan |
|- ( F e. A -> ( F ` ( N ` ( 1r ` R ) ) ) e. RR ) |
23 |
22
|
recnd |
|- ( F e. A -> ( F ` ( N ` ( 1r ` R ) ) ) e. CC ) |
24 |
23
|
sqvald |
|- ( F e. A -> ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` ( N ` ( 1r ` R ) ) ) ) ) |
25 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
26 |
1 2 25
|
abvmul |
|- ( ( F e. A /\ ( N ` ( 1r ` R ) ) e. B /\ ( N ` ( 1r ` R ) ) e. B ) -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( N ` ( 1r ` R ) ) ) ) = ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` ( N ` ( 1r ` R ) ) ) ) ) |
27 |
20 20 26
|
mpd3an23 |
|- ( F e. A -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( N ` ( 1r ` R ) ) ) ) = ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` ( N ` ( 1r ` R ) ) ) ) ) |
28 |
2 25 3 4 20 18
|
ringmneg2 |
|- ( F e. A -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( N ` ( 1r ` R ) ) ) = ( N ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( 1r ` R ) ) ) ) |
29 |
2 25 11 3 4 18
|
ringnegl |
|- ( F e. A -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( 1r ` R ) ) = ( N ` ( 1r ` R ) ) ) |
30 |
29
|
fveq2d |
|- ( F e. A -> ( N ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( 1r ` R ) ) ) = ( N ` ( N ` ( 1r ` R ) ) ) ) |
31 |
2 3
|
grpinvinv |
|- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( N ` ( 1r ` R ) ) ) = ( 1r ` R ) ) |
32 |
7 18 31
|
syl2anc |
|- ( F e. A -> ( N ` ( N ` ( 1r ` R ) ) ) = ( 1r ` R ) ) |
33 |
28 30 32
|
3eqtrd |
|- ( F e. A -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( N ` ( 1r ` R ) ) ) = ( 1r ` R ) ) |
34 |
33
|
fveq2d |
|- ( F e. A -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) ( N ` ( 1r ` R ) ) ) ) = ( F ` ( 1r ` R ) ) ) |
35 |
24 27 34
|
3eqtr2d |
|- ( F e. A -> ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( F ` ( 1r ` R ) ) ) |
36 |
35
|
adantr |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( F ` ( 1r ` R ) ) ) |
37 |
1 11 12
|
abv1z |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( F ` ( 1r ` R ) ) = 1 ) |
38 |
36 37
|
eqtrd |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = 1 ) |
39 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
40 |
38 39
|
eqtr4di |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
41 |
1 2
|
abvge0 |
|- ( ( F e. A /\ ( N ` ( 1r ` R ) ) e. B ) -> 0 <_ ( F ` ( N ` ( 1r ` R ) ) ) ) |
42 |
20 41
|
mpdan |
|- ( F e. A -> 0 <_ ( F ` ( N ` ( 1r ` R ) ) ) ) |
43 |
|
1re |
|- 1 e. RR |
44 |
|
0le1 |
|- 0 <_ 1 |
45 |
|
sq11 |
|- ( ( ( ( F ` ( N ` ( 1r ` R ) ) ) e. RR /\ 0 <_ ( F ` ( N ` ( 1r ` R ) ) ) ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) ) |
46 |
43 44 45
|
mpanr12 |
|- ( ( ( F ` ( N ` ( 1r ` R ) ) ) e. RR /\ 0 <_ ( F ` ( N ` ( 1r ` R ) ) ) ) -> ( ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) ) |
47 |
22 42 46
|
syl2anc |
|- ( F e. A -> ( ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) ) |
48 |
47
|
biimpa |
|- ( ( F e. A /\ ( ( F ` ( N ` ( 1r ` R ) ) ) ^ 2 ) = ( 1 ^ 2 ) ) -> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) |
49 |
40 48
|
syldan |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) |
50 |
49
|
adantlr |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( F ` ( N ` ( 1r ` R ) ) ) = 1 ) |
51 |
50
|
oveq1d |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` X ) ) = ( 1 x. ( F ` X ) ) ) |
52 |
|
simpl |
|- ( ( F e. A /\ X e. B ) -> F e. A ) |
53 |
20
|
adantr |
|- ( ( F e. A /\ X e. B ) -> ( N ` ( 1r ` R ) ) e. B ) |
54 |
1 2 25
|
abvmul |
|- ( ( F e. A /\ ( N ` ( 1r ` R ) ) e. B /\ X e. B ) -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) = ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` X ) ) ) |
55 |
52 53 10 54
|
syl3anc |
|- ( ( F e. A /\ X e. B ) -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) = ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` X ) ) ) |
56 |
2 25 11 3 5 10
|
ringnegl |
|- ( ( F e. A /\ X e. B ) -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) = ( N ` X ) ) |
57 |
56
|
fveq2d |
|- ( ( F e. A /\ X e. B ) -> ( F ` ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) = ( F ` ( N ` X ) ) ) |
58 |
55 57
|
eqtr3d |
|- ( ( F e. A /\ X e. B ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` X ) ) = ( F ` ( N ` X ) ) ) |
59 |
58
|
adantr |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( F ` ( N ` ( 1r ` R ) ) ) x. ( F ` X ) ) = ( F ` ( N ` X ) ) ) |
60 |
51 59
|
eqtr3d |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 1 x. ( F ` X ) ) = ( F ` ( N ` X ) ) ) |
61 |
1 2
|
abvcl |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
62 |
61
|
recnd |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. CC ) |
63 |
62
|
mulid2d |
|- ( ( F e. A /\ X e. B ) -> ( 1 x. ( F ` X ) ) = ( F ` X ) ) |
64 |
63
|
adantr |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 1 x. ( F ` X ) ) = ( F ` X ) ) |
65 |
60 64
|
eqtr3d |
|- ( ( ( F e. A /\ X e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( F ` ( N ` X ) ) = ( F ` X ) ) |
66 |
16 65
|
pm2.61dane |
|- ( ( F e. A /\ X e. B ) -> ( F ` ( N ` X ) ) = ( F ` X ) ) |