Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abvf.a | |- A = ( AbsVal ` R ) |
|
Assertion | abvrcl | |- ( F e. A -> R e. Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | |- A = ( AbsVal ` R ) |
|
2 | df-abv | |- AbsVal = ( r e. Ring |-> { f e. ( ( 0 [,) +oo ) ^m ( Base ` r ) ) | A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) } ) |
|
3 | 2 | mptrcl | |- ( F e. ( AbsVal ` R ) -> R e. Ring ) |
4 | 3 1 | eleq2s | |- ( F e. A -> R e. Ring ) |