Metamath Proof Explorer


Theorem abvrcl

Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypothesis abvf.a
|- A = ( AbsVal ` R )
Assertion abvrcl
|- ( F e. A -> R e. Ring )

Proof

Step Hyp Ref Expression
1 abvf.a
 |-  A = ( AbsVal ` R )
2 df-abv
 |-  AbsVal = ( r e. Ring |-> { f e. ( ( 0 [,) +oo ) ^m ( Base ` r ) ) | A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) } )
3 2 mptrcl
 |-  ( F e. ( AbsVal ` R ) -> R e. Ring )
4 3 1 eleq2s
 |-  ( F e. A -> R e. Ring )