| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
|- A = ( AbsVal ` R ) |
| 2 |
|
abvneg.b |
|- B = ( Base ` R ) |
| 3 |
|
abvrec.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
abvrec.p |
|- I = ( invr ` R ) |
| 5 |
|
simplr |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> F e. A ) |
| 6 |
|
simprl |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> X e. B ) |
| 7 |
1 2
|
abvcl |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
| 8 |
5 6 7
|
syl2anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` X ) e. RR ) |
| 9 |
8
|
recnd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` X ) e. CC ) |
| 10 |
|
simpll |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> R e. DivRing ) |
| 11 |
|
simprr |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> X =/= .0. ) |
| 12 |
2 3 4
|
drnginvrcl |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) |
| 13 |
10 6 11 12
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( I ` X ) e. B ) |
| 14 |
1 2
|
abvcl |
|- ( ( F e. A /\ ( I ` X ) e. B ) -> ( F ` ( I ` X ) ) e. RR ) |
| 15 |
5 13 14
|
syl2anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( I ` X ) ) e. RR ) |
| 16 |
15
|
recnd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( I ` X ) ) e. CC ) |
| 17 |
1 2 3
|
abvne0 |
|- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) =/= 0 ) |
| 18 |
5 6 11 17
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` X ) =/= 0 ) |
| 19 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 20 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 21 |
2 3 19 20 4
|
drnginvrr |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
| 22 |
10 6 11 21
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
| 23 |
22
|
fveq2d |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( I ` X ) ) ) = ( F ` ( 1r ` R ) ) ) |
| 24 |
1 2 19
|
abvmul |
|- ( ( F e. A /\ X e. B /\ ( I ` X ) e. B ) -> ( F ` ( X ( .r ` R ) ( I ` X ) ) ) = ( ( F ` X ) x. ( F ` ( I ` X ) ) ) ) |
| 25 |
5 6 13 24
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( I ` X ) ) ) = ( ( F ` X ) x. ( F ` ( I ` X ) ) ) ) |
| 26 |
1 20
|
abv1 |
|- ( ( R e. DivRing /\ F e. A ) -> ( F ` ( 1r ` R ) ) = 1 ) |
| 27 |
26
|
adantr |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( 1r ` R ) ) = 1 ) |
| 28 |
23 25 27
|
3eqtr3d |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( ( F ` X ) x. ( F ` ( I ` X ) ) ) = 1 ) |
| 29 |
9 16 18 28
|
mvllmuld |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( I ` X ) ) = ( 1 / ( F ` X ) ) ) |