Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
|- A = ( AbsVal ` R ) |
2 |
|
abvneg.b |
|- B = ( Base ` R ) |
3 |
|
abvrec.z |
|- .0. = ( 0g ` R ) |
4 |
|
abvrec.p |
|- I = ( invr ` R ) |
5 |
|
simplr |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> F e. A ) |
6 |
|
simprl |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> X e. B ) |
7 |
1 2
|
abvcl |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
8 |
5 6 7
|
syl2anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` X ) e. RR ) |
9 |
8
|
recnd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` X ) e. CC ) |
10 |
|
simpll |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> R e. DivRing ) |
11 |
|
simprr |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> X =/= .0. ) |
12 |
2 3 4
|
drnginvrcl |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) |
13 |
10 6 11 12
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( I ` X ) e. B ) |
14 |
1 2
|
abvcl |
|- ( ( F e. A /\ ( I ` X ) e. B ) -> ( F ` ( I ` X ) ) e. RR ) |
15 |
5 13 14
|
syl2anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( I ` X ) ) e. RR ) |
16 |
15
|
recnd |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( I ` X ) ) e. CC ) |
17 |
1 2 3
|
abvne0 |
|- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) =/= 0 ) |
18 |
5 6 11 17
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` X ) =/= 0 ) |
19 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
20 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
21 |
2 3 19 20 4
|
drnginvrr |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
22 |
10 6 11 21
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
23 |
22
|
fveq2d |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( I ` X ) ) ) = ( F ` ( 1r ` R ) ) ) |
24 |
1 2 19
|
abvmul |
|- ( ( F e. A /\ X e. B /\ ( I ` X ) e. B ) -> ( F ` ( X ( .r ` R ) ( I ` X ) ) ) = ( ( F ` X ) x. ( F ` ( I ` X ) ) ) ) |
25 |
5 6 13 24
|
syl3anc |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( I ` X ) ) ) = ( ( F ` X ) x. ( F ` ( I ` X ) ) ) ) |
26 |
1 20
|
abv1 |
|- ( ( R e. DivRing /\ F e. A ) -> ( F ` ( 1r ` R ) ) = 1 ) |
27 |
26
|
adantr |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( 1r ` R ) ) = 1 ) |
28 |
23 25 27
|
3eqtr3d |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( ( F ` X ) x. ( F ` ( I ` X ) ) ) = 1 ) |
29 |
9 16 18 28
|
mvllmuld |
|- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( I ` X ) ) = ( 1 / ( F ` X ) ) ) |