Step |
Hyp |
Ref |
Expression |
1 |
|
abvres.a |
|- A = ( AbsVal ` R ) |
2 |
|
abvres.s |
|- S = ( R |`s C ) |
3 |
|
abvres.b |
|- B = ( AbsVal ` S ) |
4 |
3
|
a1i |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> B = ( AbsVal ` S ) ) |
5 |
2
|
subrgbas |
|- ( C e. ( SubRing ` R ) -> C = ( Base ` S ) ) |
6 |
5
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C = ( Base ` S ) ) |
7 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
8 |
2 7
|
ressplusg |
|- ( C e. ( SubRing ` R ) -> ( +g ` R ) = ( +g ` S ) ) |
9 |
8
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( +g ` R ) = ( +g ` S ) ) |
10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
11 |
2 10
|
ressmulr |
|- ( C e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
12 |
11
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( .r ` R ) = ( .r ` S ) ) |
13 |
|
subrgsubg |
|- ( C e. ( SubRing ` R ) -> C e. ( SubGrp ` R ) ) |
14 |
13
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C e. ( SubGrp ` R ) ) |
15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
16 |
2 15
|
subg0 |
|- ( C e. ( SubGrp ` R ) -> ( 0g ` R ) = ( 0g ` S ) ) |
17 |
14 16
|
syl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( 0g ` R ) = ( 0g ` S ) ) |
18 |
2
|
subrgring |
|- ( C e. ( SubRing ` R ) -> S e. Ring ) |
19 |
18
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> S e. Ring ) |
20 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
21 |
1 20
|
abvf |
|- ( F e. A -> F : ( Base ` R ) --> RR ) |
22 |
20
|
subrgss |
|- ( C e. ( SubRing ` R ) -> C C_ ( Base ` R ) ) |
23 |
|
fssres |
|- ( ( F : ( Base ` R ) --> RR /\ C C_ ( Base ` R ) ) -> ( F |` C ) : C --> RR ) |
24 |
21 22 23
|
syl2an |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F |` C ) : C --> RR ) |
25 |
15
|
subg0cl |
|- ( C e. ( SubGrp ` R ) -> ( 0g ` R ) e. C ) |
26 |
|
fvres |
|- ( ( 0g ` R ) e. C -> ( ( F |` C ) ` ( 0g ` R ) ) = ( F ` ( 0g ` R ) ) ) |
27 |
14 25 26
|
3syl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( ( F |` C ) ` ( 0g ` R ) ) = ( F ` ( 0g ` R ) ) ) |
28 |
1 15
|
abv0 |
|- ( F e. A -> ( F ` ( 0g ` R ) ) = 0 ) |
29 |
28
|
adantr |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
30 |
27 29
|
eqtrd |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( ( F |` C ) ` ( 0g ` R ) ) = 0 ) |
31 |
|
simp1l |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> F e. A ) |
32 |
22
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C C_ ( Base ` R ) ) |
33 |
32
|
sselda |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C ) -> x e. ( Base ` R ) ) |
34 |
33
|
3adant3 |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> x e. ( Base ` R ) ) |
35 |
|
simp3 |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> x =/= ( 0g ` R ) ) |
36 |
1 20 15
|
abvgt0 |
|- ( ( F e. A /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) |
37 |
31 34 35 36
|
syl3anc |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) |
38 |
|
fvres |
|- ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
39 |
38
|
3ad2ant2 |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
40 |
37 39
|
breqtrrd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> 0 < ( ( F |` C ) ` x ) ) |
41 |
|
simp1l |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> F e. A ) |
42 |
|
simp1r |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> C e. ( SubRing ` R ) ) |
43 |
42 22
|
syl |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> C C_ ( Base ` R ) ) |
44 |
|
simp2l |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> x e. C ) |
45 |
43 44
|
sseldd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> x e. ( Base ` R ) ) |
46 |
|
simp3l |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> y e. C ) |
47 |
43 46
|
sseldd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> y e. ( Base ` R ) ) |
48 |
1 20 10
|
abvmul |
|- ( ( F e. A /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
49 |
41 45 47 48
|
syl3anc |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
50 |
10
|
subrgmcl |
|- ( ( C e. ( SubRing ` R ) /\ x e. C /\ y e. C ) -> ( x ( .r ` R ) y ) e. C ) |
51 |
42 44 46 50
|
syl3anc |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( x ( .r ` R ) y ) e. C ) |
52 |
51
|
fvresd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( .r ` R ) y ) ) = ( F ` ( x ( .r ` R ) y ) ) ) |
53 |
44
|
fvresd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
54 |
46
|
fvresd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` y ) = ( F ` y ) ) |
55 |
53 54
|
oveq12d |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( ( F |` C ) ` x ) x. ( ( F |` C ) ` y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
56 |
49 52 55
|
3eqtr4d |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( .r ` R ) y ) ) = ( ( ( F |` C ) ` x ) x. ( ( F |` C ) ` y ) ) ) |
57 |
1 20 7
|
abvtri |
|- ( ( F e. A /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
58 |
41 45 47 57
|
syl3anc |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
59 |
7
|
subrgacl |
|- ( ( C e. ( SubRing ` R ) /\ x e. C /\ y e. C ) -> ( x ( +g ` R ) y ) e. C ) |
60 |
42 44 46 59
|
syl3anc |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( x ( +g ` R ) y ) e. C ) |
61 |
60
|
fvresd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( +g ` R ) y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
62 |
53 54
|
oveq12d |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( ( F |` C ) ` x ) + ( ( F |` C ) ` y ) ) = ( ( F ` x ) + ( F ` y ) ) ) |
63 |
58 61 62
|
3brtr4d |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( +g ` R ) y ) ) <_ ( ( ( F |` C ) ` x ) + ( ( F |` C ) ` y ) ) ) |
64 |
4 6 9 12 17 19 24 30 40 56 63
|
isabvd |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F |` C ) e. B ) |