| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abvres.a |  |-  A = ( AbsVal ` R ) | 
						
							| 2 |  | abvres.s |  |-  S = ( R |`s C ) | 
						
							| 3 |  | abvres.b |  |-  B = ( AbsVal ` S ) | 
						
							| 4 | 3 | a1i |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> B = ( AbsVal ` S ) ) | 
						
							| 5 | 2 | subrgbas |  |-  ( C e. ( SubRing ` R ) -> C = ( Base ` S ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C = ( Base ` S ) ) | 
						
							| 7 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 8 | 2 7 | ressplusg |  |-  ( C e. ( SubRing ` R ) -> ( +g ` R ) = ( +g ` S ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( +g ` R ) = ( +g ` S ) ) | 
						
							| 10 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 11 | 2 10 | ressmulr |  |-  ( C e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( .r ` R ) = ( .r ` S ) ) | 
						
							| 13 |  | subrgsubg |  |-  ( C e. ( SubRing ` R ) -> C e. ( SubGrp ` R ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C e. ( SubGrp ` R ) ) | 
						
							| 15 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 16 | 2 15 | subg0 |  |-  ( C e. ( SubGrp ` R ) -> ( 0g ` R ) = ( 0g ` S ) ) | 
						
							| 17 | 14 16 | syl |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( 0g ` R ) = ( 0g ` S ) ) | 
						
							| 18 | 2 | subrgring |  |-  ( C e. ( SubRing ` R ) -> S e. Ring ) | 
						
							| 19 | 18 | adantl |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> S e. Ring ) | 
						
							| 20 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 21 | 1 20 | abvf |  |-  ( F e. A -> F : ( Base ` R ) --> RR ) | 
						
							| 22 | 20 | subrgss |  |-  ( C e. ( SubRing ` R ) -> C C_ ( Base ` R ) ) | 
						
							| 23 |  | fssres |  |-  ( ( F : ( Base ` R ) --> RR /\ C C_ ( Base ` R ) ) -> ( F |` C ) : C --> RR ) | 
						
							| 24 | 21 22 23 | syl2an |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F |` C ) : C --> RR ) | 
						
							| 25 | 15 | subg0cl |  |-  ( C e. ( SubGrp ` R ) -> ( 0g ` R ) e. C ) | 
						
							| 26 |  | fvres |  |-  ( ( 0g ` R ) e. C -> ( ( F |` C ) ` ( 0g ` R ) ) = ( F ` ( 0g ` R ) ) ) | 
						
							| 27 | 14 25 26 | 3syl |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( ( F |` C ) ` ( 0g ` R ) ) = ( F ` ( 0g ` R ) ) ) | 
						
							| 28 | 1 15 | abv0 |  |-  ( F e. A -> ( F ` ( 0g ` R ) ) = 0 ) | 
						
							| 29 | 28 | adantr |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) | 
						
							| 30 | 27 29 | eqtrd |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( ( F |` C ) ` ( 0g ` R ) ) = 0 ) | 
						
							| 31 |  | simp1l |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> F e. A ) | 
						
							| 32 | 22 | adantl |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C C_ ( Base ` R ) ) | 
						
							| 33 | 32 | sselda |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C ) -> x e. ( Base ` R ) ) | 
						
							| 34 | 33 | 3adant3 |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> x e. ( Base ` R ) ) | 
						
							| 35 |  | simp3 |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> x =/= ( 0g ` R ) ) | 
						
							| 36 | 1 20 15 | abvgt0 |  |-  ( ( F e. A /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) | 
						
							| 37 | 31 34 35 36 | syl3anc |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) | 
						
							| 38 |  | fvres |  |-  ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) ) | 
						
							| 39 | 38 | 3ad2ant2 |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> ( ( F |` C ) ` x ) = ( F ` x ) ) | 
						
							| 40 | 37 39 | breqtrrd |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> 0 < ( ( F |` C ) ` x ) ) | 
						
							| 41 |  | simp1l |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> F e. A ) | 
						
							| 42 |  | simp1r |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> C e. ( SubRing ` R ) ) | 
						
							| 43 | 42 22 | syl |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> C C_ ( Base ` R ) ) | 
						
							| 44 |  | simp2l |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> x e. C ) | 
						
							| 45 | 43 44 | sseldd |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> x e. ( Base ` R ) ) | 
						
							| 46 |  | simp3l |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> y e. C ) | 
						
							| 47 | 43 46 | sseldd |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> y e. ( Base ` R ) ) | 
						
							| 48 | 1 20 10 | abvmul |  |-  ( ( F e. A /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) | 
						
							| 49 | 41 45 47 48 | syl3anc |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) | 
						
							| 50 | 10 | subrgmcl |  |-  ( ( C e. ( SubRing ` R ) /\ x e. C /\ y e. C ) -> ( x ( .r ` R ) y ) e. C ) | 
						
							| 51 | 42 44 46 50 | syl3anc |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( x ( .r ` R ) y ) e. C ) | 
						
							| 52 | 51 | fvresd |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( .r ` R ) y ) ) = ( F ` ( x ( .r ` R ) y ) ) ) | 
						
							| 53 | 44 | fvresd |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` x ) = ( F ` x ) ) | 
						
							| 54 | 46 | fvresd |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` y ) = ( F ` y ) ) | 
						
							| 55 | 53 54 | oveq12d |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( ( F |` C ) ` x ) x. ( ( F |` C ) ` y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) | 
						
							| 56 | 49 52 55 | 3eqtr4d |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( .r ` R ) y ) ) = ( ( ( F |` C ) ` x ) x. ( ( F |` C ) ` y ) ) ) | 
						
							| 57 | 1 20 7 | abvtri |  |-  ( ( F e. A /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) | 
						
							| 58 | 41 45 47 57 | syl3anc |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) | 
						
							| 59 | 7 | subrgacl |  |-  ( ( C e. ( SubRing ` R ) /\ x e. C /\ y e. C ) -> ( x ( +g ` R ) y ) e. C ) | 
						
							| 60 | 42 44 46 59 | syl3anc |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( x ( +g ` R ) y ) e. C ) | 
						
							| 61 | 60 | fvresd |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( +g ` R ) y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) | 
						
							| 62 | 53 54 | oveq12d |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( ( F |` C ) ` x ) + ( ( F |` C ) ` y ) ) = ( ( F ` x ) + ( F ` y ) ) ) | 
						
							| 63 | 58 61 62 | 3brtr4d |  |-  ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( +g ` R ) y ) ) <_ ( ( ( F |` C ) ` x ) + ( ( F |` C ) ` y ) ) ) | 
						
							| 64 | 4 6 9 12 17 19 24 30 40 56 63 | isabvd |  |-  ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F |` C ) e. B ) |