Step |
Hyp |
Ref |
Expression |
1 |
|
abvtriv.a |
|- A = ( AbsVal ` R ) |
2 |
|
abvtriv.b |
|- B = ( Base ` R ) |
3 |
|
abvtriv.z |
|- .0. = ( 0g ` R ) |
4 |
|
abvtriv.f |
|- F = ( x e. B |-> if ( x = .0. , 0 , 1 ) ) |
5 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
6 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
7 |
|
biid |
|- ( R e. DivRing <-> R e. DivRing ) |
8 |
|
eldifsn |
|- ( y e. ( B \ { .0. } ) <-> ( y e. B /\ y =/= .0. ) ) |
9 |
|
eldifsn |
|- ( z e. ( B \ { .0. } ) <-> ( z e. B /\ z =/= .0. ) ) |
10 |
2 5 3
|
drngmcl |
|- ( ( R e. DivRing /\ y e. ( B \ { .0. } ) /\ z e. ( B \ { .0. } ) ) -> ( y ( .r ` R ) z ) e. ( B \ { .0. } ) ) |
11 |
7 8 9 10
|
syl3anbr |
|- ( ( R e. DivRing /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( .r ` R ) z ) e. ( B \ { .0. } ) ) |
12 |
|
eldifsn |
|- ( ( y ( .r ` R ) z ) e. ( B \ { .0. } ) <-> ( ( y ( .r ` R ) z ) e. B /\ ( y ( .r ` R ) z ) =/= .0. ) ) |
13 |
11 12
|
sylib |
|- ( ( R e. DivRing /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( ( y ( .r ` R ) z ) e. B /\ ( y ( .r ` R ) z ) =/= .0. ) ) |
14 |
13
|
simprd |
|- ( ( R e. DivRing /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( .r ` R ) z ) =/= .0. ) |
15 |
1 2 3 4 5 6 14
|
abvtrivd |
|- ( R e. DivRing -> F e. A ) |