Metamath Proof Explorer


Theorem abvtriv

Description: The trivial absolute value. (This theorem is true as long as R is a domain, but it is not true for rings with zero divisors, which violate the multiplication axiom; abvdom is the converse of this remark.) (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses abvtriv.a
|- A = ( AbsVal ` R )
abvtriv.b
|- B = ( Base ` R )
abvtriv.z
|- .0. = ( 0g ` R )
abvtriv.f
|- F = ( x e. B |-> if ( x = .0. , 0 , 1 ) )
Assertion abvtriv
|- ( R e. DivRing -> F e. A )

Proof

Step Hyp Ref Expression
1 abvtriv.a
 |-  A = ( AbsVal ` R )
2 abvtriv.b
 |-  B = ( Base ` R )
3 abvtriv.z
 |-  .0. = ( 0g ` R )
4 abvtriv.f
 |-  F = ( x e. B |-> if ( x = .0. , 0 , 1 ) )
5 eqid
 |-  ( .r ` R ) = ( .r ` R )
6 drngring
 |-  ( R e. DivRing -> R e. Ring )
7 biid
 |-  ( R e. DivRing <-> R e. DivRing )
8 eldifsn
 |-  ( y e. ( B \ { .0. } ) <-> ( y e. B /\ y =/= .0. ) )
9 eldifsn
 |-  ( z e. ( B \ { .0. } ) <-> ( z e. B /\ z =/= .0. ) )
10 2 5 3 drngmcl
 |-  ( ( R e. DivRing /\ y e. ( B \ { .0. } ) /\ z e. ( B \ { .0. } ) ) -> ( y ( .r ` R ) z ) e. ( B \ { .0. } ) )
11 7 8 9 10 syl3anbr
 |-  ( ( R e. DivRing /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( .r ` R ) z ) e. ( B \ { .0. } ) )
12 eldifsn
 |-  ( ( y ( .r ` R ) z ) e. ( B \ { .0. } ) <-> ( ( y ( .r ` R ) z ) e. B /\ ( y ( .r ` R ) z ) =/= .0. ) )
13 11 12 sylib
 |-  ( ( R e. DivRing /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( ( y ( .r ` R ) z ) e. B /\ ( y ( .r ` R ) z ) =/= .0. ) )
14 13 simprd
 |-  ( ( R e. DivRing /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( .r ` R ) z ) =/= .0. )
15 1 2 3 4 5 6 14 abvtrivd
 |-  ( R e. DivRing -> F e. A )