Description: The trivial absolute value. (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvtriv.a | |- A = ( AbsVal ` R ) |
|
| abvtriv.b | |- B = ( Base ` R ) |
||
| abvtriv.z | |- .0. = ( 0g ` R ) |
||
| abvtriv.f | |- F = ( x e. B |-> if ( x = .0. , 0 , 1 ) ) |
||
| Assertion | abvtriv | |- ( R e. DivRing -> F e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvtriv.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvtriv.b | |- B = ( Base ` R ) |
|
| 3 | abvtriv.z | |- .0. = ( 0g ` R ) |
|
| 4 | abvtriv.f | |- F = ( x e. B |-> if ( x = .0. , 0 , 1 ) ) |
|
| 5 | drngdomn | |- ( R e. DivRing -> R e. Domn ) |
|
| 6 | 1 2 3 4 | abvtrivg | |- ( R e. Domn -> F e. A ) |
| 7 | 5 6 | syl | |- ( R e. DivRing -> F e. A ) |