Step |
Hyp |
Ref |
Expression |
1 |
|
abvtriv.a |
|- A = ( AbsVal ` R ) |
2 |
|
abvtriv.b |
|- B = ( Base ` R ) |
3 |
|
abvtriv.z |
|- .0. = ( 0g ` R ) |
4 |
|
abvtriv.f |
|- F = ( x e. B |-> if ( x = .0. , 0 , 1 ) ) |
5 |
|
abvtrivd.1 |
|- .x. = ( .r ` R ) |
6 |
|
abvtrivd.2 |
|- ( ph -> R e. Ring ) |
7 |
|
abvtrivd.3 |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y .x. z ) =/= .0. ) |
8 |
1
|
a1i |
|- ( ph -> A = ( AbsVal ` R ) ) |
9 |
2
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
10 |
|
eqidd |
|- ( ph -> ( +g ` R ) = ( +g ` R ) ) |
11 |
5
|
a1i |
|- ( ph -> .x. = ( .r ` R ) ) |
12 |
3
|
a1i |
|- ( ph -> .0. = ( 0g ` R ) ) |
13 |
|
0re |
|- 0 e. RR |
14 |
|
1re |
|- 1 e. RR |
15 |
13 14
|
ifcli |
|- if ( x = .0. , 0 , 1 ) e. RR |
16 |
15
|
a1i |
|- ( ( ph /\ x e. B ) -> if ( x = .0. , 0 , 1 ) e. RR ) |
17 |
16 4
|
fmptd |
|- ( ph -> F : B --> RR ) |
18 |
2 3
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
19 |
|
iftrue |
|- ( x = .0. -> if ( x = .0. , 0 , 1 ) = 0 ) |
20 |
|
c0ex |
|- 0 e. _V |
21 |
19 4 20
|
fvmpt |
|- ( .0. e. B -> ( F ` .0. ) = 0 ) |
22 |
6 18 21
|
3syl |
|- ( ph -> ( F ` .0. ) = 0 ) |
23 |
|
0lt1 |
|- 0 < 1 |
24 |
|
eqeq1 |
|- ( x = y -> ( x = .0. <-> y = .0. ) ) |
25 |
24
|
ifbid |
|- ( x = y -> if ( x = .0. , 0 , 1 ) = if ( y = .0. , 0 , 1 ) ) |
26 |
|
1ex |
|- 1 e. _V |
27 |
20 26
|
ifex |
|- if ( y = .0. , 0 , 1 ) e. _V |
28 |
25 4 27
|
fvmpt |
|- ( y e. B -> ( F ` y ) = if ( y = .0. , 0 , 1 ) ) |
29 |
|
ifnefalse |
|- ( y =/= .0. -> if ( y = .0. , 0 , 1 ) = 1 ) |
30 |
28 29
|
sylan9eq |
|- ( ( y e. B /\ y =/= .0. ) -> ( F ` y ) = 1 ) |
31 |
30
|
3adant1 |
|- ( ( ph /\ y e. B /\ y =/= .0. ) -> ( F ` y ) = 1 ) |
32 |
23 31
|
breqtrrid |
|- ( ( ph /\ y e. B /\ y =/= .0. ) -> 0 < ( F ` y ) ) |
33 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
34 |
33
|
eqcomi |
|- 1 = ( 1 x. 1 ) |
35 |
6
|
3ad2ant1 |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> R e. Ring ) |
36 |
|
simp2l |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> y e. B ) |
37 |
|
simp3l |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> z e. B ) |
38 |
2 5
|
ringcl |
|- ( ( R e. Ring /\ y e. B /\ z e. B ) -> ( y .x. z ) e. B ) |
39 |
35 36 37 38
|
syl3anc |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y .x. z ) e. B ) |
40 |
|
eqeq1 |
|- ( x = ( y .x. z ) -> ( x = .0. <-> ( y .x. z ) = .0. ) ) |
41 |
40
|
ifbid |
|- ( x = ( y .x. z ) -> if ( x = .0. , 0 , 1 ) = if ( ( y .x. z ) = .0. , 0 , 1 ) ) |
42 |
20 26
|
ifex |
|- if ( ( y .x. z ) = .0. , 0 , 1 ) e. _V |
43 |
41 4 42
|
fvmpt |
|- ( ( y .x. z ) e. B -> ( F ` ( y .x. z ) ) = if ( ( y .x. z ) = .0. , 0 , 1 ) ) |
44 |
39 43
|
syl |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y .x. z ) ) = if ( ( y .x. z ) = .0. , 0 , 1 ) ) |
45 |
7
|
neneqd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> -. ( y .x. z ) = .0. ) |
46 |
45
|
iffalsed |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( ( y .x. z ) = .0. , 0 , 1 ) = 1 ) |
47 |
44 46
|
eqtrd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y .x. z ) ) = 1 ) |
48 |
36 28
|
syl |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` y ) = if ( y = .0. , 0 , 1 ) ) |
49 |
|
simp2r |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> y =/= .0. ) |
50 |
49
|
neneqd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> -. y = .0. ) |
51 |
50
|
iffalsed |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( y = .0. , 0 , 1 ) = 1 ) |
52 |
48 51
|
eqtrd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` y ) = 1 ) |
53 |
|
eqeq1 |
|- ( x = z -> ( x = .0. <-> z = .0. ) ) |
54 |
53
|
ifbid |
|- ( x = z -> if ( x = .0. , 0 , 1 ) = if ( z = .0. , 0 , 1 ) ) |
55 |
20 26
|
ifex |
|- if ( z = .0. , 0 , 1 ) e. _V |
56 |
54 4 55
|
fvmpt |
|- ( z e. B -> ( F ` z ) = if ( z = .0. , 0 , 1 ) ) |
57 |
37 56
|
syl |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` z ) = if ( z = .0. , 0 , 1 ) ) |
58 |
|
simp3r |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> z =/= .0. ) |
59 |
58
|
neneqd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> -. z = .0. ) |
60 |
59
|
iffalsed |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( z = .0. , 0 , 1 ) = 1 ) |
61 |
57 60
|
eqtrd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` z ) = 1 ) |
62 |
52 61
|
oveq12d |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( ( F ` y ) x. ( F ` z ) ) = ( 1 x. 1 ) ) |
63 |
34 47 62
|
3eqtr4a |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y .x. z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) |
64 |
|
breq1 |
|- ( 0 = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) -> ( 0 <_ 2 <-> if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ 2 ) ) |
65 |
|
breq1 |
|- ( 1 = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) -> ( 1 <_ 2 <-> if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ 2 ) ) |
66 |
|
0le2 |
|- 0 <_ 2 |
67 |
|
1le2 |
|- 1 <_ 2 |
68 |
64 65 66 67
|
keephyp |
|- if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ 2 |
69 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
70 |
68 69
|
breqtri |
|- if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ ( 1 + 1 ) |
71 |
70
|
a1i |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ ( 1 + 1 ) ) |
72 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
73 |
6 72
|
syl |
|- ( ph -> R e. Grp ) |
74 |
73
|
3ad2ant1 |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> R e. Grp ) |
75 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
76 |
2 75
|
grpcl |
|- ( ( R e. Grp /\ y e. B /\ z e. B ) -> ( y ( +g ` R ) z ) e. B ) |
77 |
74 36 37 76
|
syl3anc |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( +g ` R ) z ) e. B ) |
78 |
|
eqeq1 |
|- ( x = ( y ( +g ` R ) z ) -> ( x = .0. <-> ( y ( +g ` R ) z ) = .0. ) ) |
79 |
78
|
ifbid |
|- ( x = ( y ( +g ` R ) z ) -> if ( x = .0. , 0 , 1 ) = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) ) |
80 |
20 26
|
ifex |
|- if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) e. _V |
81 |
79 4 80
|
fvmpt |
|- ( ( y ( +g ` R ) z ) e. B -> ( F ` ( y ( +g ` R ) z ) ) = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) ) |
82 |
77 81
|
syl |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y ( +g ` R ) z ) ) = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) ) |
83 |
52 61
|
oveq12d |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( ( F ` y ) + ( F ` z ) ) = ( 1 + 1 ) ) |
84 |
71 82 83
|
3brtr4d |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y ( +g ` R ) z ) ) <_ ( ( F ` y ) + ( F ` z ) ) ) |
85 |
8 9 10 11 12 6 17 22 32 63 84
|
isabvd |
|- ( ph -> F e. A ) |