| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- y e. _V |
| 2 |
1
|
brdom |
|- ( A ~<_ y <-> E. f f : A -1-1-> y ) |
| 3 |
|
f1f |
|- ( f : A -1-1-> y -> f : A --> y ) |
| 4 |
3
|
frnd |
|- ( f : A -1-1-> y -> ran f C_ y ) |
| 5 |
|
onss |
|- ( y e. On -> y C_ On ) |
| 6 |
|
sstr2 |
|- ( ran f C_ y -> ( y C_ On -> ran f C_ On ) ) |
| 7 |
4 5 6
|
syl2im |
|- ( f : A -1-1-> y -> ( y e. On -> ran f C_ On ) ) |
| 8 |
|
epweon |
|- _E We On |
| 9 |
|
wess |
|- ( ran f C_ On -> ( _E We On -> _E We ran f ) ) |
| 10 |
7 8 9
|
syl6mpi |
|- ( f : A -1-1-> y -> ( y e. On -> _E We ran f ) ) |
| 11 |
10
|
adantl |
|- ( ( A ~<_ y /\ f : A -1-1-> y ) -> ( y e. On -> _E We ran f ) ) |
| 12 |
|
f1f1orn |
|- ( f : A -1-1-> y -> f : A -1-1-onto-> ran f ) |
| 13 |
|
eqid |
|- { <. w , z >. | ( f ` w ) _E ( f ` z ) } = { <. w , z >. | ( f ` w ) _E ( f ` z ) } |
| 14 |
13
|
f1owe |
|- ( f : A -1-1-onto-> ran f -> ( _E We ran f -> { <. w , z >. | ( f ` w ) _E ( f ` z ) } We A ) ) |
| 15 |
12 14
|
syl |
|- ( f : A -1-1-> y -> ( _E We ran f -> { <. w , z >. | ( f ` w ) _E ( f ` z ) } We A ) ) |
| 16 |
|
weinxp |
|- ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } We A <-> ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) We A ) |
| 17 |
|
reldom |
|- Rel ~<_ |
| 18 |
17
|
brrelex1i |
|- ( A ~<_ y -> A e. _V ) |
| 19 |
|
sqxpexg |
|- ( A e. _V -> ( A X. A ) e. _V ) |
| 20 |
|
incom |
|- ( ( A X. A ) i^i { <. w , z >. | ( f ` w ) _E ( f ` z ) } ) = ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) |
| 21 |
|
inex1g |
|- ( ( A X. A ) e. _V -> ( ( A X. A ) i^i { <. w , z >. | ( f ` w ) _E ( f ` z ) } ) e. _V ) |
| 22 |
20 21
|
eqeltrrid |
|- ( ( A X. A ) e. _V -> ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) e. _V ) |
| 23 |
|
weeq1 |
|- ( x = ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) -> ( x We A <-> ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) We A ) ) |
| 24 |
23
|
spcegv |
|- ( ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) e. _V -> ( ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) We A -> E. x x We A ) ) |
| 25 |
18 19 22 24
|
4syl |
|- ( A ~<_ y -> ( ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) We A -> E. x x We A ) ) |
| 26 |
16 25
|
biimtrid |
|- ( A ~<_ y -> ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } We A -> E. x x We A ) ) |
| 27 |
15 26
|
sylan9r |
|- ( ( A ~<_ y /\ f : A -1-1-> y ) -> ( _E We ran f -> E. x x We A ) ) |
| 28 |
11 27
|
syld |
|- ( ( A ~<_ y /\ f : A -1-1-> y ) -> ( y e. On -> E. x x We A ) ) |
| 29 |
28
|
impancom |
|- ( ( A ~<_ y /\ y e. On ) -> ( f : A -1-1-> y -> E. x x We A ) ) |
| 30 |
29
|
exlimdv |
|- ( ( A ~<_ y /\ y e. On ) -> ( E. f f : A -1-1-> y -> E. x x We A ) ) |
| 31 |
2 30
|
biimtrid |
|- ( ( A ~<_ y /\ y e. On ) -> ( A ~<_ y -> E. x x We A ) ) |
| 32 |
31
|
ex |
|- ( A ~<_ y -> ( y e. On -> ( A ~<_ y -> E. x x We A ) ) ) |
| 33 |
32
|
pm2.43b |
|- ( y e. On -> ( A ~<_ y -> E. x x We A ) ) |
| 34 |
33
|
rexlimiv |
|- ( E. y e. On A ~<_ y -> E. x x We A ) |