Description: Axiom of Choice equivalent. By using restricted quantifiers, we can express the Axiom of Choice with a single explicit conjunction. (If you want to figure it out, the rewritten equivalent ac3 is easier to understand.) Note: aceq0 shows the logical equivalence to ax-ac . (New usage is discouraged.) (Contributed by NM, 18-Jul-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ac2 | |- E. y A. z e. x A. w e. z E! v e. z E. u e. y ( z e. u /\ v e. u ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ac | |- E. y A. z A. w ( ( z e. w /\ w e. x ) -> E. v A. u ( E. t ( ( u e. w /\ w e. t ) /\ ( u e. t /\ t e. y ) ) <-> u = v ) ) |
|
| 2 | aceq0 | |- ( E. y A. z e. x A. w e. z E! v e. z E. u e. y ( z e. u /\ v e. u ) <-> E. y A. z A. w ( ( z e. w /\ w e. x ) -> E. v A. u ( E. t ( ( u e. w /\ w e. t ) /\ ( u e. t /\ t e. y ) ) <-> u = v ) ) ) |
|
| 3 | 1 2 | mpbir | |- E. y A. z e. x A. w e. z E! v e. z E. u e. y ( z e. u /\ v e. u ) |