Metamath Proof Explorer


Theorem ac2

Description: Axiom of Choice equivalent. By using restricted quantifiers, we can express the Axiom of Choice with a single explicit conjunction. (If you want to figure it out, the rewritten equivalent ac3 is easier to understand.) Note: aceq0 shows the logical equivalence to ax-ac . (New usage is discouraged.) (Contributed by NM, 18-Jul-1996)

Ref Expression
Assertion ac2
|- E. y A. z e. x A. w e. z E! v e. z E. u e. y ( z e. u /\ v e. u )

Proof

Step Hyp Ref Expression
1 ax-ac
 |-  E. y A. z A. w ( ( z e. w /\ w e. x ) -> E. v A. u ( E. t ( ( u e. w /\ w e. t ) /\ ( u e. t /\ t e. y ) ) <-> u = v ) )
2 aceq0
 |-  ( E. y A. z e. x A. w e. z E! v e. z E. u e. y ( z e. u /\ v e. u ) <-> E. y A. z A. w ( ( z e. w /\ w e. x ) -> E. v A. u ( E. t ( ( u e. w /\ w e. t ) /\ ( u e. t /\ t e. y ) ) <-> u = v ) ) )
3 1 2 mpbir
 |-  E. y A. z e. x A. w e. z E! v e. z E. u e. y ( z e. u /\ v e. u )