Description: Equivalent of Axiom of Choice (class version). (Contributed by NM, 10-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ac4c.1 | |- A e. _V | |
| Assertion | ac4c | |- E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ac4c.1 | |- A e. _V | |
| 2 | raleq | |- ( y = A -> ( A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) <-> A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) | |
| 3 | 2 | exbidv | |- ( y = A -> ( E. f A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) <-> E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) | 
| 4 | ac4 | |- E. f A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) | |
| 5 | 1 3 4 | vtocl | |- E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) |