Metamath Proof Explorer


Theorem ac4c

Description: Equivalent of Axiom of Choice (class version). (Contributed by NM, 10-Feb-1997)

Ref Expression
Hypothesis ac4c.1
|- A e. _V
Assertion ac4c
|- E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x )

Proof

Step Hyp Ref Expression
1 ac4c.1
 |-  A e. _V
2 raleq
 |-  ( y = A -> ( A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) <-> A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) )
3 2 exbidv
 |-  ( y = A -> ( E. f A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) <-> E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) )
4 ac4
 |-  E. f A. x e. y ( x =/= (/) -> ( f ` x ) e. x )
5 1 3 4 vtocl
 |-  E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x )