Description: Equivalent of Axiom of Choice (class version). (Contributed by NM, 10-Feb-1997)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ac4c.1 | |- A e. _V |
|
Assertion | ac4c | |- E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac4c.1 | |- A e. _V |
|
2 | raleq | |- ( y = A -> ( A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) <-> A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
|
3 | 2 | exbidv | |- ( y = A -> ( E. f A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) <-> E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
4 | ac4 | |- E. f A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) |
|
5 | 1 3 4 | vtocl | |- E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) |