Description: Equivalent of Axiom of Choice. B is a collection B ( x ) of nonempty sets. Remark after Theorem 10.46 of TakeutiZaring p. 98. (Contributed by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6c4.1 | |- A e. _V | |
| ac6c4.2 | |- B e. _V | ||
| Assertion | ac6c5 | |- ( A. x e. A B =/= (/) -> E. f A. x e. A ( f ` x ) e. B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ac6c4.1 | |- A e. _V | |
| 2 | ac6c4.2 | |- B e. _V | |
| 3 | 1 2 | ac6c4 | |- ( A. x e. A B =/= (/) -> E. f ( f Fn A /\ A. x e. A ( f ` x ) e. B ) ) | 
| 4 | exsimpr | |- ( E. f ( f Fn A /\ A. x e. A ( f ` x ) e. B ) -> E. f A. x e. A ( f ` x ) e. B ) | |
| 5 | 3 4 | syl | |- ( A. x e. A B =/= (/) -> E. f A. x e. A ( f ` x ) e. B ) |