Description: An Axiom of Choice equivalent. Given a family x of mutually disjoint nonempty sets, there exists a set y containing exactly one member from each set in the family. Theorem 6M(4) of Enderton p. 151. (Contributed by NM, 14-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ac8 | |- ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac5 | |- ( CHOICE <-> A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) ) |
|
| 2 | 1 | axaci | |- ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) |